JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B.Tech. in ELECTRICAL AND ELECTRONICS ENGINEERING III YEAR COURSE STRUCTURE AND SYLLABUS (R18) Applicable From 2018-19 Admitted Batch

III YEAR I SEMESTER

S. No.	Course Code	Course Title		т	Ρ	Credits
1	EE501PE	Power Electronics	3	1	0	4
2	EE502PE	Power System-II	3	1	0	4
3	EE503PE	Measurements and Instrumentation	3	1	0	4
4		Professional Elective-I	3	0	0	3
5	SM504MS	Business Economics and Financial Analysis	3	0	0	3
6	EE505PC	Power System Simulation Lab	0	0	2	1
7	EE506PC	Power Electronics Lab	0	0	2	1
8	EE507PC	Measurements and Instrumentation Lab	0	0	2	1
9	EN508HS	Advanced Communication Skills Lab	0	0	2	1
10	*MC510	ntellectual Property Rights		0	0	0
		Total Credits	18	3	8	22

III YEAR II SEMESTER

S. No	Course Code	Course Title	L	Т	Ρ	Credits
1		Open Elective-I	3	0	0	3
2		Professional Elective-II	3	0	0	3
3	EE601PC	Signals and Systems	2	1	0	3
4	EE602PC	Microprocessors & Microcontrollers	3	0	0	3
5	EE603PC	Power System Protection	3	1	0	4
6	EE604PC	Power System Operation and Control	3	0	0	3
7	EE605PC	Power System Lab	0	0	2	1
8	EE606PC	Microprocessors & Microcontrollers Lab	0	0	2	1
9	EE607PC	Signals and Systems Lab	0	0	2	1
10	*MC609	Environmental Science	3	0	0	0
		Total Credits	20	2	6	22

*MC - Environmental Science – Should be Registered by Lateral Entry Students Only.

NOTE: Industrial Oriented Mini Project/ Summer Internship is to be carried out during the summer vacation between 6th and 7th semesters. Students should submit report of Industrial Oriented Mini Project/ Summer Internship for evaluation.

Professional Elective - I

EE511PE	Computer Architecture
EE512PE	High Voltage Engineering
EE513PE	Electrical Machine Design

Professional Elective - II

EE611PE	Optimization Techniques
EE612PE	Power Semiconductor Drives
EE613PE	Wind and Solar Energy systems

EE501PE: POWER ELECTRONICS

III Year B.Tech. EEE I-Sem	LTPC
	3 1 0 4
Prerequisite: Analog Electronics, Digital Electronics	

Prerequisite: Analog Electronics, Digital Electronics Course Objectives:

- To Design/develop suitable power converter for efficient control or conversion of power in drive applications
- To Design / develop suitable power converter for efficient transmission and utilization of power in power system applications.

Course Outcomes: At the end of this course students will demonstrate the ability to

- Understand the differences between signal level and power level devices.
- Analyze controlled rectifier circuits.
- Analyze the operation of DC-DC choppers.
- Analyze the operation of voltage source inverters.

UNIT-I:

POWER SWITCHING DEVICES

Concept of power electronics, scope and applications, types of power converters; Power semiconductor switches and their V-I characteristics - Power Diodes, Power BJT, SCR, Power MOSFET, Power IGBT; Thyristor ratings and protection, methods of SCR commutation, UJT as a trigger source, gate drive circuits for BJT and MOSFETs

UNIT-II:

AC-DC CONVERTERS (PHASE CONTROLLED RECTIFIERS)

Principles of single-phase fully-controlled converter with R, RL, and RLE load, Principles of single-phase half-controlled converter with RL and RLE load, Principles of three-phase fully-controlled converter operation with RLE load, Effect of load and source inductances, General idea of gating circuits, Single phase and Three phase dual converters

UNIT-III:

DC-DC CONVERTERS (CHOPPER/SMPS)

Introduction, elementary chopper with an active switch and diode, concepts of duty ratio, average inductor voltage, average capacitor current. Buck converter - Power circuit, analysis and waveforms at steady state, duty ratio control of output voltage. Boost converter - Power circuit, analysis and waveforms at steady state, relation between duty ratio and average output voltage. Buck-Boost converter - Power circuit, analysis and waveforms at steady state, relation between duty ratio and average output voltage. Buck-Boost average output voltage.

UNIT-IV:

AC-DC CONVERTERS (INVERTERS)

Introduction, principle of operation, performance parameters, single phase bridge inverters with R, RL loads, 3-phase bridge inverters - 120 and 180 degrees mode of operation, Voltage control of single phase inverters –single pulse width modulation, multiple pulse width modulation, sinusoidal pulse width modulation.

UNIT-V:

AC-AC CONVERTERS

Phase Controller (AC Voltage Regulator)-Introduction, principle of operation of single phase voltage controllers for R, R-L loads and its applications. Cyclo-converter-Principle of operation of single phase

cyclo-converters, relevant waveforms, circulating current mode of operation, Advantages and disadvantages.

TEXT BOOKS:

- 1. M. H. Rashid, "Power electronics: circuits, devices, and applications", Pearson Education India, 2009.
- 2. N. Mohan and T. M. Undeland, "Power Electronics: Converters, Applications and Design", John Wiley & Sons, 2007.

- 1. R. W. Erickson and D. Maksimovic, "Fundamentals of Power Electronics", Springer Science & Business Media, 2007.
- 2. L. Umanand, "Power Electronics: Essentials and Applications", Wiley India, 2009.

EE502PE: POWER SYSTEM - II

III Year B.Tech. EEE I-Sem

L T P C 3 1 0 4

Prerequisite: Power System -I and Electro Magnetic Fields

Course Objectives:

- To analyze the performance of transmission lines.
- To understand the voltage control and compensation methods.
- To understand the per unit representation of power systems.
- To examine the performance of travelling waves.
- To know the methods of overvoltage protection and Insulation coordination of transmission lines
- To know the symmetrical components and fault calculation analysis

Course Outcomes:

- Analyze transmission line performance.
- Apply load compensation techniques to control reactive power
- Understand the application of per unit quantities.
- Design over voltage protection and insulation coordination
- Determine the fault currents for symmetrical and unbalanced faults

UNIT-I:

Performance of Lines

Representation of lines, short transmission lines, medium length lines, nominal T and PIrepresentations, long transmission lines. The equivalent circuit representation of a long Line, A, B, C, D constants, Ferranti Effect, Power flow through a transmission line, receiving end power circle diagram.

UNIT-II:

Voltage Control

Introduction – methods of voltage control, shunt and series capacitors / Inductors, tap changing transformers, synchronous phase modifiers.

Compensation In Power Systems

Introduction - Concepts of Load compensation – Load ability characteristics of overhead lines – Uncompensated transmission line – Symmetrical line – Radial line with asynchronous load – Compensation of lines.

UNIT-III:

Per Unit Representation of Power Systems

The one-line diagram, impedance and reactance diagrams, per unit quantities, changing the base of per unit quantities, advantages of per unit system.

Travelling Waves on Transmission Lines

Production of travelling waves, open circuited line, short circuited line, line terminated through a resistance, line connected to a cable, reflection and refraction at T-junction line terminated through a capacitance, capacitor connection at a T-junction, Attenuation of travelling waves.

UNIT-IV:

Overvoltage Protection and Insulation Coordination

Over voltage due to arcing ground and Peterson coil, lightning, horn gaps, surge diverters, rod gaps, expulsion type lightning arrester, valve type lightning arrester, ground wires, ground rods, counter poise, surge absorbers, insulation coordination, volt-time curves.

UNIT - V:

SYMMETRICAL COMPONENTS AND FAULT CALCULATIONS

Significance of positive, negative and zero sequence components, Average 3-phase power in terms of symmetrical components, sequence impedances and sequence networks, fault calculations, sequence network equations, single line to ground fault, line to line fault, double line to ground fault, three phase fault, faults on power systems, faults with fault impedance, reactors and their location, short circuit capacity of a bus.

TEXT BOOKS:

- 1. John J. Grainger & W.D. Stevenson: Power System Analysis Mc Graw Hill International 1994.
- 2. C.L. Wadhwa: Electrical Power Systems New Age International Pub. Co. Third Edition, 2001.

- 1. Hadi Scadat: Power System Analysis Tata Mc Graw Hill Pub. Co. 2002
- 2. W.D. Stevenson: Elements of Power system Analysis McGraw Hill International Student Edition.
- 3. D.P. Kothari and I. J. Nagrath, Modern Power System Analysis Tata Mc Graw Hill Pub. Co., New Delhi, Fourth edition, 2011

EE503PE: MEASUREMENTS AND INSTRUMENTATION

III Year B.Tech. EEE I-Sem

L	Т	Ρ	С
3	1	0	4

Pre-requisite: Basic Electrical Engineering, Analog Electronics, Electrical Circuit Analysis & Electro Magnetic fields.

Course objectives:

- To introduce the basic principles of all measuring instruments
- To deal with the measurement of voltage, current, Power factor, power, energy and magnetic measurements.
- To understand the basic concepts of smart and digital metering.

Course Outcomes: After completion of this course, the student able to

- Understand different types of measuring instruments, their construction, operation and characteristics
- Identify the instruments suitable for typical measurements
- Apply the knowledge about transducers and instrument transformers to use them effectively.
- Apply the knowledge of smart and digital metering for industrial applications

UNIT-I:

Introduction to Measuring Instruments

Classification – deflecting, control and damping torques – Ammeters and Voltmeters – PMMC, moving iron type instruments – expression for the deflecting torque and control torque – Errors and compensations, extension of range using shunts and series resistance. Electrostatic Voltmeters-electrometer type and attracted disc type – extension of range of E.S. Voltmeters.

UNIT-II:

Potentiometers & Instrument Transformers

Principle and operation of D.C. Crompton's potentiometer – standardization – Measurement of unknown resistance, current, voltage. A.C. Potentiometers: polar and coordinate type's standardization – applications. CT and PT – Ratio and phase angle errors

UNIT-III:

Measurement of Power & Energy

Single phase dynamometer wattmeter, LPF and UPF, Double element and three element dynamometer wattmeter, expression for deflecting and control torques – Extension of range of wattmeter using instrument transformers – Measurement of active and reactive powers in balanced and unbalanced systems. Single phase induction type energy meter – driving and braking torques – errors and compensations – testing by phantom loading using R.S.S. meter. Three phase energy meter – tri-vector meter, maximum demand meters.

UNIT-IV:

DC & AC Bridges

Method of measuring low, medium and high resistance – sensitivity of Wheat-stone's bridge – Carey Foster's bridge, Kelvin's double bridge for measuring low resistance, measurement of high resistance – loss of charge method.

Measurement of inductance- Maxwell's bridge, Hay's bridge, Anderson's bridge - Owen's bridge. Measurement of capacitance and loss angle –Desaunty's Bridge - Wien's bridge – Schering Bridge.

UNIT-V:

Transducers

Definition of transducers, Classification of transducers, Advantages of Electrical transducers, Characteristics and choice of transducers; Principle operation of LVDT and capacitor transducers; LVDT Applications, Strain gauge and its principle of operation, gauge factor, Thermistors, Thermocouples, Piezo electric transducers, photovoltaic, photo conductive cells, and photo diodes. **Introduction to Smart and Digital Metering:** Digital Multi-meter, True RMS meters, Clamp-on meters, Digital Storage Oscilloscope

TEXT BOOKS:

- 1. G. K. Banerjee, "Electrical and Electronic Measurements", PHI Learning Pvt. Ltd., 2nd Edition, 2016
- 2. S. C. Bhargava, "Electrical Measuring Instruments and Measurements", BS Publications, 2012.

- 1. A. K. Sawhney, "Electrical & Electronic Measurement & Instruments", Dhanpat Rai & Co. Publications, 2005.
- 2. R. K. Rajput, "Electrical & Electronic Measurement & Instrumentation", S. Chand and Company Ltd., 2007.
- 3. Buckingham and Price, "Electrical Measurements", Prentice Hall, 1988.
- 4. Reissland, M. U, "Electrical Measurements: Fundamentals, Concepts, Applications", New Age International (P) Limited Publishers, 1st Edition 2010.
- 5. E.W. Golding and F. C. Widdis, "Electrical Measurements and measuring Instruments", fifth Edition, Wheeler Publishing, 2011.

EE511PE: COMPUTER ARCHITECTURE (Professional Elective - I)

III Year B.Tech. EEE I-Sem	L	т	Ρ	С	
	3	0	0	3	

Prerequisite: Digital Electronics

Course Objectives:

- To understand basic components of computers.
- To understand the architecture of 8086 processor.
- To understand the instruction sets, instruction formats and various addressing modes of 8086.
- To understand the representation of data at the machine level and how computations are performed at machine level.
- To understand the memory organization and I/O organization.
- To understand the parallelism both in terms of single and multiple processors.

Course Outcomes: At the end of this course, students will demonstrate the ability to

- Understand the concepts of microprocessors, their principles and practices.
- Write efficient programs in assembly language of the 8086 family of microprocessors.
- Organize a modern computer system and be able to relate it to real examples.
- Develop the programs in assembly language for 80286, 80386 and MIPS processors in real and protected modes.
- Implement embedded applications using ATOM processor.

UNIT- I

Introduction to Computer Organization

Architecture and function of general computer system, CISC Vs RISC, Data types, Integer Arithmetic -Multiplication, Division, Fixed and Floating-point representation and arithmetic, Control unit operation, Hardware implementation of CPU with Micro instruction, microprogramming, System buses, Multi-bus organization.

UNIT- II

Memory Organization

System memory, Cache memory - types and organization, Virtual memory and its implementation, Memory management unit, Magnetic Hard disks, Optical Disks.

Input – Output Organization

Accessing I/O devices, Direct Memory Access and DMA controller, Interrupts and Interrupt Controllers, Arbitration, Multilevel Bus Architecture, Interface circuits - Parallel and serial port. Features of PCI and PCI Express bus.

UNIT- III

16 AND 32 Microprocessors

80x86 Architecture, IA – 32 and IA – 64, Programming model, Concurrent operation of EU and BIU, Real mode addressing, Segmentation, addressing modes of 80x86, Instruction set of 80x86, I/O addressing in 80x86

UNIT- IV

Pipelining

Introduction to pipelining, Instruction level pipelining (ILP), compiler techniques for ILP,Data hazards, Dynamic scheduling, Dependability, Branch cost, Branch Prediction, Influence on instruction set.

UNIT-V:

Different Architectures

VLIW Architecture, DSP Architecture, SoC architecture, MIPS Processor and programming

TEXT BOOKS:

- 1. V. Carl, G. Zvonko and S. G. Zaky, "Computer organization", McGraw Hill, 1978.
- 2. B. Brey and C. R. Sarma, "The Intel microprocessors", Pearson Education, 2000.

- 1. J. L. Hennessy and D. A. Patterson, "Computer Architecture A Quantitative Approach", Morgan Kauffman, 2011.
- 2. W. Stallings, "Computer organization", PHI, 1987.
- 3. P. Barry and P. Crowley, "Modern Embedded Computing", Morgan Kaufmann, 2012.
- 4. N. Mathivanan, "Microprocessors, PC Hardware and Interfacing", Prentice Hall, 2004.
- 5. Y. C. Lieu and G. A. Gibson, "Microcomputer Systems: The 8086/8088 Family", Prentice Hall India, 1986.
- 6. J. Uffenbeck, "The 8086/8088 Design, Programming, Interfacing", Prentice Hall, 1987.
- 7. B. Govindarajalu, "IBM PC and Clones", Tata McGraw Hill, 1991.
- 8. P. Able, "8086 Assembly Language Programming", Prentice Hall India.

EE512PE: HIGH VOLTAGE ENGINEERING (Professional Elective-I)

III Year B.Tech. EEE I-Sem		LTPC
		3 0 0 3
December 1. 10 December 0	L Electre Menetie Eicle	

Prerequisite: Power Systems – I, Electro Magnetic Fields

Course Objectives:

- To deal with the detailed analysis of Breakdown occurring in gaseous, liquids and solid dielectrics
- To inform about generation and measurement of High voltage and current
- To introduce High voltage testing methods

Course outcomes: At the end of the course, the student will demonstrate

- Understand the basic physics related to various breakdown processes in solid, liquid and gaseous insulating materials.
- Knowledge of generation and measurement of D. C., A.C., & Impulse voltages.
- Knowledge of tests on H. V. equipment and on insulating materials, as per the standards.
- Knowledge of how over-voltages arise in a power system, and protection against these overvoltages.

UNIT - I

Breakdown in Gases

Ionization processes and de-ionization processes, Types of Discharge, Gases as insulating materials, Breakdown in Uniform gap, non-uniform gaps, Townsend's theory, Streamer mechanism, Corona discharge

Breakdown in Liquid and Solid Insulating Materials

Breakdown in pure and commercial liquids, Solid dielectrics and composite dielectrics, intrinsic breakdown, electromechanical breakdown and thermal breakdown, Partial discharge, applications of insulating materials.

UNIT - II

Generation of High Voltages

Generation of high voltages, generation of high D. C. and A.C. voltages, generation of impulse voltages, generation of impulse currents, tripping and control of impulse generators.

UNIT- III

Measurements of High Voltages and Currents

Peak voltage, impulse voltage and high direct current measurement method, cathode ray oscillographs for impulse voltage and current measurement, measurement of dielectric constant and loss factor, partial discharge measurements.

UNIT - IV

LIGHTNING AND SWITCHING OVER-VOLTAGES

Charge formation in clouds, Stepped leader, Dart leader, Lightning Surges. Switching overvoltages, Protection against over-voltages, Surge diverters, Surge modifiers.

UNIT - V

High Voltage Testing of Electrical Apparatus and High Voltage Laboratories Various standards for HV Testing of electrical apparatus, IS, IEC standards, Testing of insulators and bushings, testing of isolators and circuit breakers, testing of cables, power transformers and some high voltage equipment,

High voltage laboratory layout, indoor and outdoor laboratories, testing facility requirements, safety precautions in H. V. Labs.

TEXT BOOKS:

- 1. M. S. Naidu and V. Kamaraju, "High Voltage Engineering", McGraw Hill Education, 2013.
- 2. C. L. Wadhwa, "High Voltage Engineering", New Age International Publishers, 2007.

- 1. D. V. Razevig (Translated by Dr. M. P. Chourasia), "High Voltage Engineering Fundamentals", Khanna Publishers, 1993.
- 2. E. Kuffel, W. S. Zaengl and J. Kuffel, "High Voltage Engineering Fundamentals", Newnes Publication, 2000.
- 3. R. Arora and W. Mosch "High Voltage and Electrical Insulation Engineering", John Wiley & Sons, 2011.
- 4. Various IS standards for HV Laboratory Techniques and Testing

EE513PE: ELECTRICAL MACHINE DESIGN (Professional Elective - I)

III Year B.Tech. EEE I-Sem	LTPC
	3 0 0 3
Dreve guiette, Flactrical Machines I. Flactrical Machines II	

Prerequisite: Electrical Machines-I, Electrical Machines-II

Course Objectives:

- To know the major considerations in electrical machine design, electrical engineering materials, space factor, choice of specific electrical and magnetic loadings,
- To analyze the thermal considerations, heat flow, temperature rise, rating of machines.
- To understand the design of transformers
- To study the design of induction motors
- To know the design of synchronous machines
- To understand the CAD design concepts

Course Outcomes: At the end of this course, students will demonstrate the ability to

- Understand the construction and performance characteristics of electrical machines.
- Understand the various factors which influence the design: electrical, magnetic and thermal loading of electrical machines
- Understand the principles of electrical machine design and carry out a basic design of an ac machine.
- Use software tools to do design calculations.

UNIT - I

Introduction

Major considerations in electrical machine design, electrical engineering materials, space factor, choice of specific electrical and magnetic loadings, thermal considerations, heat flow, temperature rise, rating of machines.

UNIT - II

Transformers

Sizing of a transformer, main dimensions, kVA output for single- and three-phase transformers, window space factor, overall dimensions, operating characteristics, regulation, no load current, temperature rise in transformers, design of cooling tank, methods for cooling of transformers.

UNIT - III

Induction Motors

Sizing of an induction motor, main dimensions, length of air gap, rules for selecting rotor slots of squirrel cage machines, design of rotor bars & slots, design of end rings, design of wound rotor, magnetic leakage calculations, leakage reactance of poly-phase machines, magnetizing current, short circuit current, circle diagram, operating characteristics.

UNIT - IV

Synchronous Machines

Sizing of a synchronous machine, main dimensions, design of salient pole machines, short circuit ratio, shape of pole face, armature design, armature parameters, estimation of airgap length, design of rotor, design of damper winding, determination of full load field mmf, design of field winding, design of turbo alternators, rotor design.

UNIT - V

Computer Aided Design (CAD)

Limitations (assumptions) of traditional designs need for CAD analysis, synthesis and hybrid methods, design optimization methods, variables, constraints and objective function, problem formulation. Introduction to FEM based machine design. Introduction to **c**omplex structures of modern machines-PMSMs, BLDCs, SRM and claw-pole machines.

TEXT BOOKS:

- 1. A. K. Sawhney, "A Course in Electrical Machine Design", Dhanpat Rai and Sons, 1970.
- 2. M.G. Say, "Theory & Performance & Design of A.C. Machines", ELBS London.

- 1. S. K. Sen, "Principles of Electrical Machine Design with computer programmes", Oxford and IBH Publishing, 2006.
- 2. K. L. Narang, "A Text Book of Electrical Engineering Drawings", Satya Prakashan, 1969.
- 3. A. Shanmugasundaram, G. Gangadharan and R. Palani, "Electrical Machine Design Data Book", New Age International, 1979.
- 4. M. V. Murthy, "Computer Aided Design of Electrical Machines", B.S. Publications, 2008.
- 5. Electrical machines and equipment design exercise examples using Ansoft's Maxwell 2D machine design package.

SM504MS: BUSINESS ECONOMICS AND FINANCIAL ANALYSIS

III Year B.Tech. EEE I-Sem

L	Т	Ρ	С
3	0	0	3

Course Objective: To learn the basic business types, impact of the economy on Business and Firms specifically. To analyze the Business from the Financial Perspective.

Course Outcome: The students will understand the various Forms of Business and the impact of economic variables on the Business. The Demand, Supply, Production, Cost, Market Structure, Pricing aspects are learnt. The Students can study the firm's financial position by analysing the Financial Statements of a Company.

UNIT – I: Introduction to Business and Economics

Business: Structure of Business Firm, Theory of Firm, Types of Business Entities, Limited Liability Companies, Sources of Capital for a Company, Non-Conventional Sources of Finance.

Economics: Significance of Economics, Micro and Macro Economic Concepts, Concepts and Importance of National Income, Inflation, Money Supply and Inflation, Business Cycle, Features and Phases of Business Cycle. Nature and Scope of Business Economics, Role of Business Economist, Multidisciplinary nature of Business Economics.

UNIT - II: Demand and Supply Analysis

Elasticity of Demand: Elasticity, Types of Elasticity, Law of Demand, Measurement and Significance of Elasticity of Demand, Factors affecting Elasticity of Demand, Elasticity of Demand in decision making, Demand Forecasting: Characteristics of Good Demand Forecasting, Steps in Demand Forecasting, Methods of Demand Forecasting.

Supply Analysis: Determinants of Supply, Supply Function and Law of Supply.

UNIT- III: Production, Cost, Market Structures & Pricing

Production Analysis: Factors of Production, Production Function, Production Function with one variable input, two variable inputs, Returns to Scale, Different Types of Production Functions.

Cost analysis: Types of Costs, Short run and Long run Cost Functions.

Market Structures: Nature of Competition, Features of Perfect competition, Monopoly, Oligopoly, Monopolistic Competition.

Pricing: Types of Pricing, Product Life Cycle based Pricing, Break Even Analysis, Cost Volume Profit Analysis.

UNIT - IV: Financial Accounting: Accounting concepts and Conventions, Accounting Equation, Double-Entry system of Accounting, Rules for maintaining Books of Accounts, Journal, Posting to Ledger, Preparation of Trial Balance, Elements of Financial Statements, Preparation of Final Accounts.

UNIT - V: Financial Analysis through Ratios: Concept of Ratio Analysis, Importance, Liquidity Ratios, Turnover Ratios, Profitability Ratios, Proprietary Ratios, Solvency, Leverage Ratios – Analysis and Interpretation (simple problems).

TEXT BOOKS:

- 1. D. D. Chaturvedi, S. L. Gupta, Business Economics Theory and Applications, International Book House Pvt. Ltd. 2013.
- 2. Dhanesh K Khatri, Financial Accounting, Tata Mc Graw Hill, 2011.
- 3. Geethika Ghosh, Piyali Gosh, Purba Roy Choudhury, Managerial Economics, 2e, Tata Mc Graw Hill Education Pvt. Ltd. 2012.

- 1. Paresh Shah, Financial Accounting for Management 2e, Oxford Press, 2015.
- 2. S. N. Maheshwari, Sunil K Maheshwari, Sharad K Maheshwari, Financial Accounting, 5e, Vikas Publications, 2013.

EE505PC: POWER SYSTEM SIMULATION LAB

III Year B.Tech. EEE I-Sem

L	Т	Ρ	С
0	0	2	1

Prerequisites: Power System-I, Power System-II Course Objectives:

- To perform voltage distributions across insulator strings
- To understand the high frequency transients
- To perform parameter estimation and fault analysis on Transmission lines
- To calculate Time constant calculations
- To perform Tariff Estimation
- To perform resonance circuit simulation

Course Outcomes: After completion of this lab, the student will be able to

- Perform various transmission line calculations
- Understand Different circuits time constants
- Analyze the experimental data and draw the conclusions.

List of Experiments:

- 1. Generation of high frequency transients through RLC circuit
- 2. Voltage distribution across insulator string
- 3. Comparison of lumped and distributed transmission lines
- 4. Calculation of fault currents of transmission line
- 5. Time constant calculation of RL circuit
- 6. Time constant calculation of RC circuit
- 7. Time constant calculation of RLC circuit
- 8. Simulation of Resonance circuit
- 9. Calculation of R, L, C, Zs of 3-phase Transmission Line
- 10. Estimation of TARIFF based on load curve

NOTE: The above experiments shall be conducted using any software tool

EE506PC: POWER ELECTRONICS LAB

III Year B.Tech. EEE I-Sem

L	Т	Ρ	С
0	0	2	1

Prerequisite: Power Electronics

Course Objectives:

- Apply the concepts of power electronic converters for efficient conversion/control of power from source to load.
- Design the power converter with suitable switches meeting a specific load requirement.

Course Outcomes: After completion of this course, the student is able to

- Understand the operating principles of various power electronic converters.
- Use power electronic simulation packages& hardware to develop the power converters.
- Analyze and choose the appropriate converters for various applications

Any eight experiments should be conducted

- 1. Study of Characteristics of SCR, MOSFET & IGBT,
- 2. Gate firing circuits for SCR's
- 3. Single Phase AC Voltage Controller with R and RL Loads
- 4. Single Phase half controlled &fully controlled bridge converter with R and RL loads
- 5. Forced Commutation circuits (Class A, Class B, Class C, Class D & Class E)
- 6. Single Phase Cyclo-converter with R and RL loads
- 7. Single Phase series& parallel inverter with R and RL loads
- 8. Single Phase Bridge inverter with R and RL loads

Any two experiments should be conducted

- 1. DC Jones chopper with R and RL Loads
- 2. Three Phase half-controlled bridge converter with R-load
- 3. Single Phase dual converter with RL loads
- (a)Simulation of single-phase Half wave converter using R and RL loads (b)Simulation of single-phase full converter using R, RL and RLE loads (c)Simulation of single-phase Semi converter using R, RL and RLE loads
- 5. (a)Simulation of Single-phase AC voltage controller using R and RL loads (b)Simulation of Single phase Cyclo-converter with R and RL-loads
- 6. Simulation of Buck chopper
- 7. Simulation of single-phase Inverter with PWM control
- 8. Simulation of three phase fully controlled converter with R and RL loads, with and without freewheeling diode. Observation of waveforms for Continuous and Discontinuous modes of operation.
- 9. Study of PWM techniques

TEXT BOOKS:

- 1. M. H. Rashid, Simulation of Electric and Electronic circuits using PSPICE by M/s PHI Publications.
- 2. User's manual of related software's

- 1. Reference guides of related software's
- 2. Rashid, Spice for power electronics and electric power, CRC Press

EE507PC: MEASUREMENTS AND INSTRUMENTATION LAB

III Year B.Tech. EEE I-Sem	L	т	Ρ	С
	0	0	2	1
Pre-requisite: Measurements and Instrumentation				

Course Objectives:

- To calibrate LPF Watt Meter, energy meter, P. F Meter using electro dynamo meter type • instrument as the standard instrument
- To determine unknown inductance, resistance, capacitance by performing experiments on D.C Bridges & A. C Bridges
- To determine three phase active & reactive powers using single wattmeter method practically
- To determine the ratio and phase angle errors of current transformer and potential transformer.

Course Outcomes: After completion of this lab the student is able to

- to choose instruments
- test any instrument
- find the accuracy of any instrument by performing experiment
- calibrate PMMC instrument using D.C potentiometer

The following experiments are required to be conducted as compulsory experiments

- 1. Calibration and Testing of single-phase energy Meter.
- 2. Calibration of dynamometer power factor meter.
- 3. Crompton D.C. Potentiometer Calibration of PMMC ammeter and PMMC voltmeter.
- 4. Kelvin's double Bridge Measurement of resistance Determination of Tolerance.
- 5. Dielectric oil testing using H.T. testing Kit.
- 6. Schering Bridge & Anderson Bridge.
- 7. Measurement of 3 Phase reactive power with single-phase wattmeter.
- 8. Measurement of displacement with the help of LVDT.

In addition to the above eight experiments, at least any two of the experiments from the following list are required to be conducted

- 9. Calibration LPF wattmeter by Phantom testing.
- 10. Measurement of 3-phase power with single watt meter and two CTs.
- 11. C.T. testing using mutual Inductor Measurement of % ratio error and phase angle of given CT by Null method.
- 12. PT testing by comparison V. G. as Null detector Measurement of % ratio error and phase angle of the given PT
- 13. Resistance strain gauge strain measurements and Calibration.
- 14. Transformer turns ratio measurement using AC bridges.
- 15. Measurement of % ratio error and phase angle of given CT by comparison.

TEXT BOOKS:

- 1. "G. K. Banerjee", "Electrical and Electronic Measurements", PHI Learning Pvt. Ltd., 2nd Edition, 2016
- 2. "S. C. Bhargava", "Electrical Measuring Instruments and Measurements", BS Publications, 2012.

REFERENCES:

1. "A. K. Sawhney", "Electrical & Electronic Measurement & Instruments", Dhanpat Rai & Co. Publications, 2005.

- 2. "R. K. Rajput", "Electrical & Electronic Measurement & Instrumentation", S. Chand and Company Ltd., 2007.
- 3. "Buckingham and Price", "Electrical Measurements", Prentice Hall, 1988.
- "Reissland, M. U", "Electrical Measurements: Fundamentals, Concepts, Applications", New Age International (P) Limited Publishers, 1st Edition 2010.
- 5. "E.W. Golding and F. C. Widdis", "Electrical Measurements and measuring Instruments", fifth Edition, Wheeler Publishing, 2011.

EN508HS: ADVANCED COMMUNICATION SKILLS LAB

III Year B.Tech. EEE I-Sem	L	т	Ρ	С
	0	0	2	1

1. INTRODUCTION:

The introduction of the Advanced Communication Skills Lab is considered essential at 3rd year level. At this stage, the students need to prepare themselves for their careers which may require them to listen to, read, speak and write in English both for their professional and interpersonal communication in the globalized context.

The proposed course should be a laboratory course to enable students to use 'good' English and perform the following:

- Gathering ideas and information to organize ideas relevantly and coherently.
- Engaging in debates.
- Participating in group discussions.
- Facing interviews.
- Writing project/research reports/technical reports.
- Making oral presentations.
- Writing formal letters.
- Transferring information from non-verbal to verbal texts and vice-versa.
- Taking part in social and professional communication.

2. OBJECTIVES:

This Lab focuses on using multi-media instruction for language development to meet the following targets:

- To improve the students' fluency in English, through a well-developed vocabulary and enable them to listen to English spoken at normal conversational speed by educated English speakers and respond appropriately in different socio-cultural and professional contexts.
- Further, they would be required to communicate their ideas relevantly and coherently in writing.
- To prepare all the students for their placements.

3. SYLLABUS:

The following course content to conduct the activities is prescribed for the Advanced English Communication Skills (AECS) Lab:

- Activities on Fundamentals of Inter-personal Communication and Building Vocabulary -Starting a conversation – responding appropriately and relevantly – using the right body language – Role Play in different situations & Discourse Skills- using visuals - Synonyms and antonyms, word roots, one-word substitutes, prefixes and suffixes, study of word origin, business vocabulary, analogy, idioms and phrases, collocations & usage of vocabulary.
- 2. Activities on Reading Comprehension –General Vs Local comprehension, reading for facts, guessing meanings from context, scanning, skimming, inferring meaning, critical reading& effective googling.
- 3. Activities on Writing Skills Structure and presentation of different types of writing *letter* writing/Resume writing/ e-correspondence/Technical report writing/ planning for writing improving one's writing.
- Activities on Presentation Skills Oral presentations (individual and group) through JAM sessions/seminars/<u>PPTs</u> and written presentations through posters/projects/reports/ e-mails/assignments etc.
- 5. Activities on Group Discussion and Interview Skills Dynamics of group discussion, intervention, summarizing, modulation of voice, body language, relevance, fluency and organization of ideas and rubrics for evaluation- Concept and process, pre-interview planning, opening

strategies, answering strategies, interview through tele-conference & video-conference and Mock Interviews.

4. MINIMUM REQUIREMENT:

The Advanced English Communication Skills (AECS) Laboratory shall have the following infrastructural facilities to accommodate at least 35 students in the lab:

- Spacious room with appropriate acoustics.
- Round Tables with movable chairs
- Audio-visual aids
- LCD Projector
- Public Address system
- P IV Processor, Hard Disk 80 GB, RAM–512 MB Minimum, Speed 2.8 GHZ
- T. V, a digital stereo & Camcorder
- Headphones of High quality

5. SUGGESTED SOFTWARE:

The software consisting of the prescribed topics elaborated above should be procured and used.

- Oxford Advanced Learner's Compass, 7th Edition
- DELTA's key to the Next Generation TOEFL Test: Advanced Skill Practice.
- Lingua TOEFL CBT Insider, by Dream tech
- TOEFL & GRE (KAPLAN, AARCO & BARRONS, USA, Cracking GRE by CLIFFS)

TEXT BOOKS:

- Effective Technical Communication by M Asharaf Rizvi. McGraw Hill Education (India) Pvt. Ltd. 2nd Edition
- 2. Academic Writing: A Handbook for International Students by Stephen Bailey, Routledge, 5th Edition.

- 1. Learn Correct English A Book of Grammar, Usage and Composition by Shiv K. Kumar and Hemalatha Nagarajan. Pearson 2007
- 2. Professional Communication by Aruna Koneru, McGraw Hill Education (India) Pvt. Ltd, 2016.
- 3. Technical Communication by Meenakshi Raman & Sangeeta Sharma, Oxford University Press 2009.
- 4. Technical Communication by Paul V. Anderson. 2007. Cengage Learning pvt. Ltd. New Delhi.
- 5. English Vocabulary in Use series, Cambridge University Press 2008.
- 6. Handbook for Technical Communication by David A. McMurrey & Joanne Buckley. 2012. Cengage Learning.
- 7. Communication Skills by Leena Sen, PHI Learning Pvt Ltd., New Delhi, 2009.
- 8. Job Hunting by Colm Downes, Cambridge University Press 2008.
- 9. English for Technical Communication for Engineering Students, Aysha Vishwamohan, Tata Mc Graw-Hill 2009.

*MC510: INTELLECTUAL PROPERTY RIGHTS

III Year B.Tech. EEE I-Sem

L	Т	Ρ	С
3	0	0	0

UNIT – I

Introduction to Intellectual property: Introduction, types of intellectual property, international organizations, agencies and treaties, importance of intellectual property rights.

UNIT – II

Trade Marks: Purpose and function of trademarks, acquisition of trade mark rights, protectable matter, selecting, and evaluating trade mark, trade mark registration processes.

UNIT – III

Law of copy rights: Fundamental of copy right law, originality of material, rights of reproduction, rights to perform the work publicly, copy right ownership issues, copy right registration, notice of copy right, international copy right law.

Law of patents: Foundation of patent law, patent searching process, ownership rights and transfer

UNIT – IV

Trade Secrets: Trade secrete law, determination of trade secrete status, liability for misappropriations of trade secrets, protection for submission, trade secrete litigation.

Unfair competition: Misappropriation right of publicity, false advertising.

UNIT – V

New development of intellectual property: new developments in trade mark law; copy right law, patent law, intellectual property audits.

International overview on intellectual property, international – trade mark law, copy right law, international patent law, and international development in trade secrets law.

TEXT BOOKS & REFERENCES:

- 1. Intellectual property right, Deborah. E. Bouchoux, Cengage learning.
- 2. Intellectual property right Unleashing the knowledge economy, prabuddha ganguli, Tata McGraw Hill Publishing company ltd.

EE611PE: OPTIMIZATION TECHNIQUES (Professional Elective - III)

III Year B.Tech. EEE II-Sem	LTPC
	3 0 0 3
Dreve enviolates Mathematica, I. Mathematica, II	

Prerequisite: Mathematics -I, Mathematics -II

Course Objectives:

- To introduce various optimization techniques i.e classical, linear programming, transportation problem, simplex algorithm, dynamic programming
- Constrained and unconstrained optimization techniques for solving and optimizing an electrical and electronic engineering circuits design problems in real world situations.
- To explain the concept of Dynamic programming and its applications to project implementation.

Course Outcomes: After completion of this course, the student will be able to

- explain the need of optimization of engineering systems
- understand optimization of electrical and electronics engineering problems
- apply classical optimization techniques, linear programming, simplex algorithm, transportation problem
- apply unconstrained optimization and constrained non-linear programming and dynamic programming
- Formulate optimization problems.

UNIT - I

Introduction and Classical Optimization Techniques: Statement of an Optimization problem – design vector – design constraints – constraint surface – objective function – objective function surfaces – classification of Optimization problems.

Classical Optimization Techniques: Single variable Optimization – multi variable Optimization without constraints – necessary and sufficient conditions for minimum/maximum – multivariable Optimization with equality constraints.

Solution by method of Lagrange multipliers – Multivariable Optimization with inequality constraints – Kuhn – Tucker conditions.

UNIT - II

Linear Programming: Standard form of a linear programming problem – geometry of linear programming problems – definitions and theorems – solution of a system of linear simultaneous equations – pivotal reduction of a general system of equations – motivation to the simplex method – simplex algorithm.

Transportation Problem: Finding initial basic feasible solution by north – west corner rule, least cost method and Vogel's approximation method – testing for optimality of balanced transportation problems.

UNIT - III

Unconstrained Non-linear Programming: One dimensional minimization methods, Classification, Fibonacci method and Quadratic interpolation method

Unconstrained Optimization Techniques: Uni-variant method, Powell's method and steepest descent method.

UNIT - IV

Constrained Non-linear Programming: Characteristics of a constrained problem - classification - Basic approach of Penalty Function method - Basic approach of Penalty Function method - Basic approaches of Interior and Exterior penalty function methods - Introduction to convex programming problem.

UNIT - V

Dynamic Programming: Dynamic programming multistage decision processes – types – concept of sub optimization and the principle of optimality – computational procedure in dynamic programming – examples illustrating the calculus method of solution - examples illustrating the tabular method of solution.

TEXT BOOKS:

- 1. Singiresu S. Rao, Engineering Optimization: Theory and Practice by John Wiley and Sons, 4th edition, 2009.
- 2. H. S. Kasene & K. D. Kumar, Introductory Operations Research, Springer (India), Pvt. Ltd., 2004

- 1. George Bernard Dantzig, Mukund Narain Thapa, "Linear programming", Springer series in operations research 3rd edition, 2003.
- 2. H. A. Taha, "Operations Research: An Introduction", 8th Edition, Pearson/Prentice Hall, 2007.
- 3. Kalyanmoy Deb, "Optimization for Engineering Design Algorithms and Examples", PHI Learning Pvt. Ltd, New Delhi, 2005.

EE612PE: POWER SEMICONDUCTOR DRIVES (Professional Elective - II)

III Year B.Tech. EEE II-Sem	L	т	Ρ	С
	3	0	0	3
Prerequisite: Power Electronics, Electrical Machines – I, Electrical Machines – II				

Course Objectives:

- To introduce the drive system and operating modes of drive and its characteristics
- To understand Speed Torque characteristics of different motor drives by various power converter topologies
- To appreciate the motoring and braking operations of drive
- To differentiate DC and AC drives

Course Outcomes: After completion of this course the student is able to

- Identify the drawbacks of speed control of motor by conventional methods.
- Differentiate Phase controlled and chopper-controlled DC drives speed-torque characteristics merits and demerits
- Understand Ac motor drive speed-torque characteristics using different control strategies its merits and demerits
- Describe Slip power recovery schemes

UNIT - I

Control of DC Motors

Introduction to Thyristor controlled Drives, Single Phase semi and fully controlled converters connected to d.c separately excited and d.c series motors – continuous current operation – output voltage and current waveforms – Speed and Torque expressions – Speed – Torque Characteristics- Problems on Converter fed d.c motors.

Three phase semi and fully controlled converters connected to d.c separately excited and d.c series motors – output voltage and current waveforms – Speed and Torque expressions – Speed – Torque characteristics – Problems.

UNIT - II

Four Quadrant Operation of DC Drives

Introduction to Four quadrant operation – Motoring operations, Electric Braking – Plugging, Dynamic, and Regenerative Braking operations. Four quadrant operation of D.C motors by single phase and three phase dual converters – Closed loop operation of DC motor (Block Diagram Only)

Control of DC Motors By Choppers: Single quadrant, Two quadrant and four quadrant chopper fed dc separately excited and series motors – Continuous current operation – Output voltage and current wave forms – Speed and torque expressions – speed-torque characteristics – Problems on Chopper fed D.C Motors – Closed Loop operation (Block Diagram Only)

UNIT - III

Control of Induction Motor

Variable voltage characteristics-Control of Induction Motor by Ac Voltage Controllers – Waveforms – speed torque characteristics.

Variable frequency characteristics-Variable frequency control of induction motor by Voltage source and current source inverter and cyclo converters- PWM control – Comparison of VSI and CSI operations – Speed torque characteristics – numerical problems on induction motor drives – Closed loop operation of induction motor drives (Block Diagram Only)

UNIT - IV

Rotor Side Control of Induction Motor

Static rotor resistance control – Slip power recovery – Static Scherbius drive – Static Kramer Drive – their performance and speed torque characteristics – advantages, applications, problems.

UNIT - V

Control of Synchronous Motors

Separate control and self-control of synchronous motors – Operation of self-controlled synchronous motors by VSI, CSI and cyclo converters. Load commutated CSI fed Synchronous Motor – Operation – Waveforms – speed torque characteristics – Applications – Advantages and Numerical Problems – Closed Loop control operation of synchronous motor drives (Block Diagram Only), variable frequency control - Cyclo converter, PWM based VSI & CSI.

TEXT BOOKS:

- 1. "G K Dubey", Fundamentals of Electric Drives, CRC Press, 2002.
- 2. "Vedam Subramanyam", Thyristor Control of Electric drives, Tata McGraw Hill Publications, 1987.

- 1. "S K Pillai", A First course on Electrical Drives, New Age International (P) Ltd. 2nd Edition. 1989
- 2. "P. C. Sen", Thyristor DC Drives, Wiley-Blackwell, 1981
- 3. "B. K. Bose", Modern Power Electronics, and AC Drives, Pearson 2015.
- 4. "R. Krishnan", Electric motor drives modeling, Analysis and control, Prentice Hall PTR, 2001

EE613PE: WIND AND SOLAR ENERGY SYSTEMS (Professional Elective - II)

III Year B.Tech. EEE II-Sem

L	Т	Ρ	С
3	0	0	3

Prerequisite: Renewable Energy Systems

Course Objectives:

- To study the physics of wind power and energy
- To understand the principle of operation of wind generators
- To know the solar power resources
- To analyze the solar photo-voltaic cells
- To discuss the solar thermal power generation
- To identify the network integration issues

Course Outcomes: At the end of this course, students will demonstrate the ability to

- Understand the energy scenario and the consequent growths of the power generate renewable energy sources.
- Understand the basic physics of wind and solar power generation.
- Understand the power electronic interfaces for wind and solar generation.
- Understand the issues related to the grid-integration of solar and wind energy systems

UNIT - I

Physics of Wind Power

History of wind power, Indian and Global statistics, Wind physics, Betz limit ratio, stall and pitch control, Wind speed statistics-probability distributions, and Wind power-cumulative distribution functions.

UNIT - II

Wind Generator Topologies

Review of modern wind turbine technologies, Fixed and Variable speed wind turbine, Induction Generators, Doubly-Fed Induction Generators and their characteristics, Permanent Magnet Synchronous Generators, Power electronics converters. Generator configurations, Converter Control.

UNIT - III

The Solar Resource

Introduction, solar radiation spectra, solar geometry, Earth Sun angles, observer Sun angles, solar day length, Estimation of solar energy availability.

Solar Photovoltaic

Technologies-Amorphous, mono-crystalline, polycrystalline; V-I characteristics of a PV cell, PV module, array, Power Electronic Converters for Solar Systems, Maximum Power point Tracking (MPPT) algorithms. Converter Control.

UNIT - IV

Network Integration Issues

Overview of grid code technical requirements. Fault ride-through for wind farms - real and reactive power regulation, voltage and frequency operating limits, solar PV and wind farm behavior during grid disturbances. Power quality issues. Power system interconnection experiences in the world. Hybrid and isolated operations of solar PV and wind systems.

UNIT - V

Solar Thermal Power Generation

Technologies, Parabolic trough, central receivers, parabolic dish, Fresnel, solar pond, elementary analysis.

TEXT BOOKS:

- 1. T. Ackermann, "Wind Power in Power Systems", John Wiley and Sons Ltd., 2005.
- 2. G. M. Masters, "Renewable and Efficient Electric Power Systems", John Wiley and Sons, 2004.

- 1. S. P. Sukhatme, "Solar Energy: Principles of Thermal Collection and Storage", McGraw Hill, 1984.
- 2. H. Siegfried and R. Waddington, "Grid integration of wind energy conversion systems" John Wiley and Sons Ltd., 2006.
- 3. G. N. Tiwari and M. K. Ghosal, "Renewable Energy Applications", Narosa Publications, 2004.
- 4. J. A. Duffie and W. A. Beckman, "Solar Engineering of Thermal Processes", John Wiley & Sons, 1991.

EE601PC: SIGNALS AND SYSTEMS

III Year B.Tech. EEE II-Sem

L	Т	Ρ	С
2	1	0	3

Course Objectives:

- This gives the basics of Signals and Systems required for all Electrical Engineering related courses.
- To understand the behavior of signal in time and frequency domain
- To understand the characteristics of LTI systems
- This gives concepts of Signals and Systems and its analysis using different transform techniques.

Course Outcomes: Upon completing this course, the student will be able to

- Differentiate various signal functions.
- Represent any arbitrary signal in time and frequency domain.
- Understand the characteristics of linear time invariant systems.
- Analyze the signals with different transform technique

UNIT - I

Signal Analysis: Analogy between Vectors and Signals, Orthogonal Signal Space, Signal approximation using Orthogonal functions, Mean Square Error, Closed or complete set of Orthogonal functions, Orthogonality in Complex functions, Classification of Signals and systems, Exponential and Sinusoidal signals, Concepts of Impulse function, Unit Step function, Signum function.

UNIT – II

Fourier series: Representation of Fourier series, Continuous time periodic signals, Properties of Fourier Series, Dirichlet's conditions, Trigonometric Fourier Series and Exponential Fourier Series, Complex Fourier spectrum.

Fourier Transforms: Deriving Fourier Transform from Fourier series, Fourier Transform of arbitrary signal, Fourier Transform of standard signals, Fourier Transform of Periodic Signals, Properties of Fourier Transform, Fourier Transforms involving Impulse function and Signum function, Introduction to Hilbert Transform.

UNIT - III

Signal Transmission through Linear Systems: Linear System, Impulse response, Response of a Linear System, Linear Time Invariant(LTI) System, Linear Time Variant (LTV) System, Transfer function of a LTI System, Filter characteristic of Linear System, Distortion less transmission through a system, Signal bandwidth, System Bandwidth, Ideal LPF, HPF, and BPF characteristics, Causality and Paley-Wiener criterion for physical realization, Relationship between Bandwidth and rise time, Convolution and Correlation of Signals, Concept of convolution in Time domain and Frequency domain, Graphical representation of Convolution.

UNIT – IV

Laplace Transforms: Laplace Transforms (L.T), Inverse Laplace Transform, Concept of Region of Convergence (ROC) for Laplace Transforms, Properties of L.T, Relation between L.T and F.T of a signal, Laplace Transform of certain signals using waveform synthesis.

Z–Transforms: Concept of Z- Transform of a Discrete Sequence, Distinction between Laplace, Fourier and Z Transforms, Region of Convergence in Z-Transform, Constraints on ROC for various classes of signals, Inverse Z-transform, Properties of Z-transforms.

UNIT - V

Sampling theorem: Graphical and analytical proof for Band Limited Signals, Impulse Sampling, Natural and Flat top Sampling, Reconstruction of signal from its samples, Effect of under sampling – Aliasing, Introduction to Band Pass Sampling.

Correlation: Cross Correlation and Auto Correlation of Functions, Properties of Correlation Functions, Energy Density Spectrum, Parsevals Theorem, Power Density Spectrum, Relation between Autocorrelation Function and Energy/Power Spectral Density Function, Relation between Convolution and Correlation, Detection of Periodic Signals in the presence of Noise by Correlation, Extraction of Signal from Noise by Filtering.

TEXT BOOKS:

- 1. Signals, Systems & Communications B.P. Lathi, 2013, BSP.
- 2. Signals and Systems A.V. Oppenheim, A.S. Willsky and S.H. Nawabi, 2 Ed.

REFERENCE BOOKS:

- 1. Signals and Systems Simon Haykin and Van Veen, Wiley 2 Ed.,
- 2. Signals and Systems A. Rama Krishna Rao, 2008, TMH
- 3. Fundamentals of Signals and Systems Michel J. Robert, 2008, MGH International Edition.
- 4. Signals, Systems and Transforms C. L. Philips, J. M. Parr and Eve A. Riskin, 3 Ed., 2004, PE.
- 5. Signals and Systems K. Deergha Rao, Birkhauser, 2018.

EE602PC: MICROPROCESSORS & MICROCONTROLLERS

III Year B.Tech. EEE II-Sem

Prerequisite: Nil

Course Objectives:

- 1. To familiarize the architecture of microprocessors and micro controllers
- 2. To provide the knowledge about interfacing techniques of bus & memory.
- 3. To understand the concepts of ARM architecture
- 4. To study the basic concepts of Advanced ARM processors

Course Outcomes: Upon completing this course, the student will be able to

- 1. Understands the internal architecture, organization and assembly language programming of 8086 processors.
- 2. Understands the internal architecture, organization and assembly language programming of 8051/controllers
- 3. Understands the interfacing techniques to 8086 and 8051 based systems.
- 4. Understands the internal architecture of ARM processors and basic concepts of advanced ARM processors.

UNIT - I:

8086 Architecture: 8086 Architecture-Functional diagram, Register Organization, Memory Segmentation, Programming Model, Memory addresses, Physical Memory Organization, Architecture of 8086, Signal descriptions of 8086, interrupts of 8086.

Instruction Set and Assembly Language Programming of 8086: Instruction formats, Addressing modes, Instruction Set, Assembler Directives, Macros, and Simple Programs involving Logical, Branch and Call Instructions, Sorting, String Manipulations.

UNIT - II:

Introduction to Microcontrollers: Overview of 8051 Microcontroller, Architecture, I/O Ports, Memory Organization, Addressing Modes and Instruction set of 8051.

8051 Real Time Control: Programming Timer Interrupts, Programming External Hardware Interrupts, Programming the Serial Communication Interrupts, Programming 8051 Timers and Counters

UNIT – III:

I/O and Memory Interface: LCD, Keyboard, External Memory RAM, ROM Interface, ADC, DAC Interface to 8051.

Serial Communication and Bus Interface: Serial Communication Standards, Serial Data Transfer Scheme, On board Communication Interfaces-I2C Bus, SPI Bus, UART; External Communication Interfaces-RS232, USB.

UNIT – IV:

ARM Architecture: ARM Processor fundamentals, ARM Architecture – Register, CPSR, Pipeline, exceptions and interrupts interrupt vector table, ARM instruction set – Data processing, Branch instructions, load store instructions, Software interrupt instructions, Program status register instructions, loading constants, Conditional execution, Introduction to Thumb instructions.

UNIT – V:

Advanced ARM Processors: Introduction to CORTEX Processor and its architecture, OMAP Processor and its Architecture.

L	Т	Ρ	С
3	0	0	3

TEXT BOOKS:

- 1. Advanced Microprocessors and Peripherals A. K. Ray and K. M. Bhurchandani, TMH, 2nd Edition 2006.
- 2. ARM System Developers guide, Andrew N SLOSS, Dominic SYMES, Chris WRIGHT, Elsevier, 2012

REFERENCE BOOKS:

- 1. The 8051 Microcontroller, Kenneth. J. Ayala, Cengage Learning, 3rd Ed, 2004.
- 2. Microprocessors and Interfacing, D. V. Hall, TMGH, 2nd Edition 2006.
- 3. The 8051 Microcontrollers, Architecture and Programming and Applications -K. Uma Rao, Andhe Pallavi, Pearson, 2009.
- 4. Digital Signal Processing and Applications with the OMAP- L138 Experimenter, Donald Reay, WILEY 2012.

EE603PC: POWER SYSTEM PROTECTION

III Year B.Tech. EEE II-Sem

L	Т	Ρ	С
3	1	0	4

Pre-requisites: Power Systems-I, Power Systems-II

Course Objectives:

- To introduce all kinds of circuit breakers and relays for protection of Generators, Transformers and feeder bus bars from Over voltages and other hazards.
- To describe neutral grounding for overall protection.
- To understand the phenomenon of Over Voltages and it's classification.

Course Outcomes: At the end of the course the student will be able to:

- Compare and contrast electromagnetic, static and microprocessor-based relays
- Apply technology to protect power system components.
- Select relay settings of over current and distance relays.
- Analyze quenching mechanisms used in air, oil and vacuum circuit breakers

UNIT - I

Protective Relays

Introduction, Need for power system protection, effects of faults, evolution of protective relays, zones of protection, primary and backup protection, essential qualities of protection, classification of protective relays and schemes, current transformers, potential transformers, basic relay terminology.

Operating Principles and Relay Construction: Electromagnetic relays, thermal relays, static relays, microprocessor based protective relays.

UNIT - II

Over-Current Protection

Time-current characteristics, current setting, over current protective schemes, directional relay, protection of parallel feeders, protection of ring mains, Phase fault and earth fault protection, Combined earth fault and phase fault protective scheme, Directional earth fault relay.

Distance Protection: Impedance relay, reactance relay, MHO relay, input quantities for various types of distance relays, Effect of arc resistance, Effect of power swings, effect of line length and source impedance on the performance of distance relays, selection of distance relays, MHO relay with blinders, Reduction of measuring units, switched distance schemes, auto re-closing.

UNIT- III

Pilot Relaying Schemes - Wire Pilot protection, Carrier current protection.

AC Machines and Bus Zone Protection: Protection of Generators, Protection of transformers, Buszone protection, frame leakage protection.

UNIT - IV:

Static Relays

Amplitude and Phase comparators, Duality between AC and PC, Static amplitude comparator, integrating and instantaneous comparators, static phase comparators, coincidence type of phase comparator, static over current relays, static directional relay, static differential relay, static distance relays, Multi input comparators, concept of Quadrilateral and Elliptical relay characteristics. **Microprocessor Based Relays**: Advantages, over current relays, directional relays, distance relays.

UNTI-V:

Circuit Breakers

Introduction, arcing in circuit breakers, arc interruption theories, re-striking and recovery voltage, resistance switching, current chopping, interruption of capacitive current, oil circuit breaker, air blast circuit breakers, SF6 circuit breaker, operating mechanism, selection of circuit breakers, high voltage d.c. breakers, ratings of circuit breakers, testing of circuit breakers.

FUSES: Introduction, fuse characteristics, types of fuses, application of HRC fuses, discrimination.

TEXT BOOKS:

- 1. Badriram and D.N. Vishwakarma, Power System Protection and Switchgear, TMH 2001.
- 2. U.A.Bakshi, M.V.Bakshi: Switchgear and Protection, Technical Publications, 2009.

- 1. C.Russel Mason "The art and science of protective relaying, Wiley Eastern, 1995
- 2. L.P.Singh "Protective relaying from Electromechanical to Microprocessors", New Age International

EE604PC: POWER SYSTEM OPERATION AND CONTROL

III Year B.Tech. EEE II-Sem

Pre-requisites: Power System-I, Power System-II **Course Objectives:**

- To understand real power control and operation
- To know the importance of frequency control
- To analyze different methods to control reactive power
- To understand unit commitment problem and importance of economic load dispatch
- To understand real time control of power systems
- **Course Outcomes:** At the end of the course the student will be able to:
 - Understand operation and control of power systems.
 - Analyze various functions of Energy Management System (EMS) functions.
 - Analyze whether the machine is in stable or unstable position.
 - Understand power system deregulation and restructuring

UNIT - I

Load Flow Studies

Introduction, Bus classification -Nodal admittance matrix - Load flow equations - Iterative methods - Gauss and Gauss Seidel Methods, Newton-Raphson Method-Fast Decoupled method-Merits and demerits of the above methods-System data for load flow study

UNIT - II

Economic Operation of Power Systems

Distribution of load between units within a plant-Transmission loss as a function of plant generation, Calculation of loss coefficients-Distribution of load between plants.

UNIT - III

Load Frequency Control

Introduction, load frequency problem-Megawatt frequency (or P-f) control channel, MVAR voltages (or Q-V) control channel-Dynamic interaction between P-f and Q-V loops. Mathematical model of speedgoverning system-Turbine models, division of power system into control areas, P-f control of single control area (the uncontrolled and controlled cases)-P-f control of two area systems (the uncontrolled cases)

UNIT - IV

Power System Stability

The stability problem-Steady state stability, transient stability and Dynamic stability-Swing equation. Equal area criterion of stability-Applications of Equal area criterion, Step by step solution of swing equation-Factors affecting transient stability, Methods to improve steady state and Transient stability, Introduction to voltage stability

UNIT - V

Computer Control of Power Systems

Need of computer control of power systems. Concept of energy control centre (or) load dispatch centre and the functions - system monitoring - data acquisition and control. System hardware configuration – SCADA and EMS functions. Network topology – Importance of Load Forecasting and simple techniques of forecasting.

L	Т	Ρ	С
3	0	0	3

TEXT BOOKS

- 1. C. L. Wadhwa, Electrical Power Systems, 3rd Edn, New Age International Publishing Co., 2001.
- 2. D. P. Kothari and I. J. Nagrath, Modern Power System Analysis, 4th Edn, Tata McGraw Hill Education Private Limited 2011.

- 1. D. P. Kothari: Modern Power System Analysis-Tata Mc Graw Hill Pub. Co. 2003.
- 2. Hadi Sadat: Power System Analysis Tata Mc Graw Hill Pub. Co. 2002.

EE605PC: POWER SYSTEM LAB

III Year B.Tech. EEE II-Sem

L T P C 0 0 2 1

Prerequisite: Power System-I, Power System-II, Power System Protection, Power System Operation and Control, Electrical Machines

Course Objectives:

- perform testing of CT, PT's and Insulator strings
- To find sequence impedances of 3-Φ synchronous machine and Transformer
- To perform fault analysis on Transmission line models and Generators.

Course Outcomes: After completion of this lab, the student will be able to

- Perform various load flow techniques
- Understand Different protection methods
- Analyze the experimental data and draw the conclusions.

The following experiments are required to be conducted as compulsory experiments: Part - A

- 1. Characteristics of IDMT Over-Current Relay.
- 2. Differential protection of 1-Φ transformer.
- 3. Characteristics of Micro Processor based Over Voltage/Under Voltage relay.
- 4. A,B,C,D constants of a Long Transmission line
- 5. Finding the sequence impedances of $3-\Phi$ synchronous machine.
- 6. Finding the sequence impedances of $3-\Phi$ Transformer.

In addition to the above six experiments, at least any four of the experiments from the following list are required to be conducted.

Part - B

- 1. Formation of Y_{BUS} .
- 2. Load Flow Analysis using Gauss Seidal (GS) Method.
- 3. Load Flow Analysis using Fast Decoupled (FD) Method.
- 4. Formation of Z_{BUS} .
- 5. Simulation of Compensated Line

TEXT BOOKS:

- 1. C.L. Wadhwa: Electrical Power Systems Third Edition, New Age International Pub. Co., 2001.
- 2. Hadi Sadat: Power System Analysis –Tata Mc Graw Hill Pub. Co. 2002.

REFERENCES:

1. D. P. Kothari: Modern Power System Analysis-Tata Mc Graw Hill Pub. Co. 2003.

EE606PC: MICROPROCESSORS & MICROCONTROLLERS LAB

III Year B.Tech. EEE II-Sem

L	Т	Ρ	С
0	0	2	1

Cycle 1: Using 8086 Processor Kits and/or Assembler (5 Weeks)

- Assembly Language Programs to 8086 to Perform
 - 1. Arithmetic, Logical, String Operations on 16 Bit and 32-Bit Data.
 - 2. Bit level Logical Operations, Rotate, Shift, Swap and Branch Operations.

Cycle 2: Using 8051 Microcontroller Kit (6 weeks)

- Introduction to IDE
 - 1. Assembly Language Programs to Perform Arithmetic (Both Signed and Unsigned) 16 Bit Data Operations, Logical Operations (Byte and Bit Level Operations), Rotate, Shift, Swap and Branch Instructions
 - 2. Time delay Generation Using Timers of 8051.
 - 3. Serial Communication from / to 8051 to / from I/O devices.
 - 4. Program Using Interrupts to Generate Square Wave 10 KHZ Frequency on P2.1 Using Timer 0 8051 in 8 bit Auto reload Mode and Connect a 1 HZ Pulse to INT1 pin and Display on Port 0. Assume Crystal Frequency as 11.0592 MHZ

Cycle 3: Interfacing I/O Devices to 8051(5 Weeks)

- 1. 7 Segment Display to 8051.
- 2. Matrix Keypad to 8051.
- 3. Sequence Generator Using Serial Interface in 8051.
- 4. 8 bit ADC Interface to 8051.
- 5. Triangular Wave Generator through DAC interfaces to 8051.

TEXT BOOKS:

- 1. Advanced Microprocessors and Peripherals by A K Ray, Tata McGraw-Hill Education, 2006
- 2. The 8051 *Microcontrollers*: Architecture, Programming & Applications by Dr. K. Uma Rao, Andhe Pallavi, Pearson, 2009.

EE607PC: SIGNALS AND SYSTEMS LAB

III Year B.Tech. EEE II-Sem

L	Т	Ρ	С
0	0	2	1

Prerequisites: Signals and Systems

Course Objectives:

- To develop ability to analyze linear systems and signals
- To develop critical understanding of mathematical methods to analyze linear systems and signals
- To know the various transform techniques
- To analyse sampling principles

Course Outcomes: At the end of this course, students will demonstrate the ability to

- Understand the concepts of continuous time and discrete time systems.
- Analyse systems in complex frequency domain.
- Understand sampling theorem and its implications.

List of Experiments:

- 1. Frequency Spectrum of continuous signal
- 2. Frequency Spectrum of impulse signals (Time Bounded signals)
- 3. Frequency Response Analysis using any Software
- 4. Frequency Response Analysis for any Transfer Function (Preferably Transformer)
- Write a program to generate the discrete sequences
 (i) Unit step(ii) Unit impulse(iii) Ramp(iv)Periodic sinusoidal sequences.
 (Plot all the sequences).
- 6. Find the Fourier transform of a square pulse. (Plot its amplitude and phase spectrum).
- 7. Write a program to convolve two discrete time sequences. (Plot all the sequences). Verify the result by analytical calculation.
- 8. WriteaprogramtofindthetrigonometricFourierseriescoefficientsofarectangular periodic signal. Reconstruct the signal by combining the Fourier series coefficients with appropriate weightings.
- 9. Write a program to find the trigonometric and exponential Fourier series coefficients of a periodic rectangular signal. Plot the discrete spectrum of the signal.
- 10. Generateadiscretetimesequencebysamplingacontinuoustimesignal.Showthat with sampling rates less than Nyquist rate, aliasing occurs while reconstructing the signal.
- 11. Write a program to find the magnitude and phase response of first order low pass and high pass filter. Plot the responses in logarithmic scale.
- 12. Write a program to find the response of a low pass filter and high pass filter, when a speech signal is passed through these filters.

TEXT BOOKS:

- 1. A. V. Oppenheim, A. S. Willsky and S. H. Nawab, "Signals and systems", Prentice Hall India, 1997.
- 2. J. G. Proakis and D. G. Manolakis, "Digital Signal Processing: Principles, Algorithms, and Applications", Pearson, 2006.

- 1. H. P. Hsu, "Signals and systems", Schaum's series, McGraw Hill Education, 2010.
- 2. S. Haykin and B. V. Veen, "Signals and Systems", John Wiley and Sons, 2007.

- 3. A. V. Oppenheim and R. W. Schafer, "Discrete-Time Signal Processing", Prentice Hall, 2009.
- 4. M. J. Robert "Fundamentals of Signals and Systems", McGraw Hill Education, 2007.
- 5. B. P. Lathi, "Linear Systems and Signals", Oxford University Press, 2009.

*MC609: ENVIRONMENTAL SCIENCE

III Year B.Tech. EEE II-Sem

Course Objectives:

- Understanding the importance of ecological balance for sustainable development.
- Understanding the impacts of developmental activities and mitigation measures
- Understanding the environmental policies and regulations

Course Outcomes:

Based on this course, the Engineering graduate will understand /evaluate / develop technologies on the basis of ecological principles and environmental regulations which in turn helps in sustainable development

UNIT - I

Ecosystems: Definition, Scope and Importance of ecosystem. Classification, structure, and function of an ecosystem, Food chains, food webs, and ecological pyramids. Flow of energy, Biogeochemical cycles, Bioaccumulation, Biomagnification, ecosystem value, services and carrying capacity, Field visits.

UNIT - II

Natural Resources: Classification of Resources: Living and Non-Living resources, water **resources:** use and over utilization of surface and ground water, floods and droughts, Dams: benefits and problems. **Mineral resources:** use and exploitation, environmental effects of extracting and using mineral resources, **Land resources:** Forest resources, **Energy resources:** growing energy needs, renewable and non renewable energy sources, use of alternate energy source, case studies.

UNIT - III

Biodiversity And Biotic Resources: Introduction, Definition, genetic, species and ecosystem diversity. Value of biodiversity; consumptive use, productive use, social, ethical, aesthetic and optional values. India as a mega diversity nation, Hot spots of biodiversity. Field visit. Threats to biodiversity: habitat loss, poaching of wildlife, man-wildlife conflicts; conservation of biodiversity: In-Situ and Ex-situ conservation. National Biodiversity act.

UNIT - IV

Environmental Pollution and Control Technologies: Environmental Pollution: Classification of pollution, Air Pollution: Primary and secondary pollutants, Automobile and Industrial pollution, Ambient air quality standards. Water pollution: Sources and types of pollution, drinking water quality standards. Soil Pollution: Sources and types, Impacts of modern agriculture, degradation of soil. Noise Pollution: Sources and Health hazards, standards, Solid waste: Municipal Solid Waste management, composition and characteristics of e-Waste and its management. Pollution control technologies: Wastewater Treatment methods: Primary, secondary and Tertiary.

Overview of air pollution control technologies, Concepts of bioremediation. **Global Environmental Problems and Global Efforts: Climate** change and impacts on human environment. Ozone depletion and Ozone depleting substances (ODS). Deforestation and desertification. International conventions / Protocols: Earth summit, Kyoto protocol, and Montréal Protocol.

UNIT - V

Environmental Policy, Legislation & EIA: Environmental Protection act, Legal aspects Air Act- 1981, Water Act, Forest Act, Wild life Act, Municipal solid waste management and handling rules, biomedical waste management and handling rules, hazardous waste management and handling rules. EIA: EIA

L	Т	Ρ	С
3	0	0	0

structure, methods of baseline data acquisition. Overview on Impacts of air, water, biological and Socioeconomical aspects. Strategies for risk assessment, Concepts of Environmental Management Plan (EMP). **Towards Sustainable Future:** Concept of Sustainable Development, Population and its explosion, Crazy Consumerism, Environmental Education, Urban Sprawl, Human health, Environmental Ethics, Concept of Green Building, Ecological Foot Print, Life Cycle assessment (LCA), Low carbon life style.

TEXT BOOKS:

- 1. Textbook of Environmental Studies for Undergraduate Courses by Erach Bharucha for University Grants Commission.
- 2. Environmental Studies by R. Rajagopalan, Oxford University Press.

REFERENCE BOOKS:

- 1. Environmental Science: towards a sustainable future by Richard T. Wright. 2008 PHL Learning Private Ltd. New Delhi.
- 2. Environmental Engineering and science by Gilbert M. Masters and Wendell P. Ela. 2008 PHI Learning Pvt. Ltd.
- 3. Environmental Science by Daniel B. Botkin & Edward A. Keller, Wiley INDIA edition.
- 4. Environmental Studies by Anubha Kaushik, 4th Edition, New age international publishers.
- 5. Text book of Environmental Science and Technology Dr. M. Anji Reddy 2007, BS Publications.