JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B.Tech. in ELECTRONICS AND COMMUNICATION ENGINEERING

III YEAR COURSE STRUCTURE AND SYLLABUS (R18) Applicable From 2018-19 Admitted Batch

III YEAR I SEMESTER

S. No.	Course Code	Course Title		т	Ρ	Credits
1	EC501PC	Microprocessors & Microcontrollers	3	1	0	4
2	EC502PC	Data Communications and Networks	3	1	0	4
3	EC503PC	Control Systems	3	1	0	4
4	SM504MS	Business Economics & Financial		0	0	3
		Analysis				
5		Professional Elective - I	3	0	0	3
6	EC505PC	Microprocessors & Microcontrollers Lab	0	0	3	1.5
7	EC506PC	Data Communications and Networks Lab	0	0	3	1.5
8	EN508HS	Advanced Communication Skills Lab		0	2	1
9	*MC510	Intellectual Property Rights		0	0	0
		Total Credits	18	3	8	22

III YEAR II SEMESTER

S. No.	Course Code	Course Title	L	т	Ρ	Credits
1	EC601PC	Antennas and Propagation	3	1	0	4
2	EC602PC	Digital Signal Processing	3	1	0	4
3	EC603PC	VLSI Design	3	1	0	4
4		Professional Elective - II	3	0	0	3
5		Open Elective - I	3	0	0	3
6	EC604PC	Digital Signal Processing Lab	0	0	3	1.5
7	EC605PC	e – CAD Lab	0	0	3	1.5
8	EC606PC	Scripting Languages Lab	0	0	2	1
9	*MC609	Environmental Science		0	0	0
		Total Credits	18	3	8	22

*MC - Environmental Science – Should be Registered by Lateral Entry Students Only.

Note: Industrial Oriented Mini Project/ Summer Internship is to be carried out during the summer vacation between 6th and 7th semesters. Students should submit report of Industrial Oriented Mini Project/ Summer Internship for evaluation.

Professional Elective – I

EC511PE	Computer Organization & Operating Systems
EC512PE	Error Correcting Codes
EC513PE	Electronic Measurements and Instrumentation

Professional Elective – II

EC611PE	Object Oriented Programming through Java
EC612PE	Mobile Communications and Networks
EC613PE	Embedded System Design

EC501PC: MICROPROCESSORS AND MICROCONTROLLERS

B.Tech. III Year I Semester

L	т	Ρ	С
3	1	0	4

Prerequisite: Nil

Course Objectives:

- 1. To familiarize the architecture of microprocessors and micro controllers
- 2. To provide the knowledge about interfacing techniques of bus & memory.
- 3. To understand the concepts of ARM architecture
- 4. To study the basic concepts of Advanced ARM processors

Course Outcomes: Upon completing this course, the student will be able to

- 1. Understands the internal architecture, organization and assembly language programming of 8086 processors.
- 2. Understands the internal architecture, organization and assembly language programming of 8051/controllers
- 3. Understands the interfacing techniques to 8086 and 8051 based systems.
- 4. Understands the internal architecture of ARM processors and basic concepts of advanced ARM processors.

UNIT -I:

8086 Architecture: 8086 Architecture-Functional diagram, Register Organization, Memory Segmentation, Programming Model, Memory addresses, Physical Memory Organization, Architecture of 8086, Signal descriptions of 8086, interrupts of 8086.

Instruction Set and Assembly Language Programming of 8086: Instruction formats, Addressing modes, Instruction Set, Assembler Directives, Macros, and Simple Programs involving Logical, Branch and Call Instructions, Sorting, String Manipulations.

UNIT -II:

Introduction to Microcontrollers: Overview of 8051 Microcontroller, Architecture, I/O Ports, Memory Organization, Addressing Modes and Instruction set of 8051.

8051 Real Time Control: Programming Timer Interrupts, Programming External Hardware Interrupts, Programming the Serial Communication Interrupts, Programming 8051 Timers and Counters

UNIT -III:

I/O And Memory Interface: LCD, Keyboard, External Memory RAM, ROM Interface, ADC, DAC Interface to 8051.

Serial Communication and Bus Interface: Serial Communication Standards, Serial Data Transfer Scheme, On board Communication Interfaces-I2C Bus, SPI Bus, UART; External Communication Interfaces-RS232,USB.

UNIT –IV:

ARM Architecture: ARM Processor fundamentals, ARM Architecture – Register, CPSR, Pipeline, exceptions and interrupts interrupt vector table, ARM instruction set – Data processing, Branch instructions, load store instructions, Software interrupt instructions, Program status register instructions, loading constants, Conditional execution, Introduction to Thumb instructions.

UNIT – V:

Advanced ARM Processors: Introduction to CORTEX Processor and its architecture, OMAP Processor and its Architecture.

TEXT BOOKS:

- 1. Advanced Microprocessors and Peripherals A. K. Ray and K. M. Bhurchandani, TMH, 2nd Edition 2006.
- 2. ARM System Developers guide, Andrew N SLOSS, Dominic SYMES, Chris WRIGHT, Elsevier, 2012

- 1. The 8051 Microcontroller, Kenneth. J. Ayala, Cengage Learning, 3rd Ed, 2004.
- 2. Microprocessors and Interfacing, D. V. Hall, TMGH, 2nd Edition 2006.
- 3. The 8051 Microcontrollers, Architecture and Programming and Applications -K. Uma Rao, Andhe Pallavi, Pearson, 2009.
- 4. Digital Signal Processing and Applications with the OMAP- L138 Experimenter, Donald Reay, WILEY 2012.

EC502PC: DATA COMMUNICATIONS AND NETWORKS

B.Tech. III Year I Semester

L	т	Ρ	С
3	1	0	4

Pre-requisite: Digital Communications

Course Objectives:

- 1. To introduce the Fundamentals of data communication networks
- 2. To demonstrate the Functions of various protocols of Data link layer.
- 3. To demonstrate Functioning of various Routing protocols.
- 4. To introduce the Functions of various Transport layer protocols.
- 5. To understand the significance of application layer protocols

Course Outcomes: Upon completing this course, the student will be able to

- 1. Know the Categories and functions of various Data communication Networks
- 2. Design and analyze various error detection techniques.
- 3. Demonstrate the mechanism of routing the data in network layer
- 4. Know the significance of various Flow control and Congestion control Mechanisms
- 5. Know the Functioning of various Application layer Protocols.

UNIT - I:

Introduction to Data Communications: Components, Data Representation, Data Flow, Networks-Distributed Processing, Network Criteria, Physical Structures, Network Models, Categories of Networks Interconnection of Networks, The Internet - A Brief History, The Internet Today, Protocol and Standards - Protocols, Standards, Standards Organizations, Internet Standards. Network Models, Layered Tasks, OSI model, Layers in OSI model, TCP/IP Protocol Suite, Addressing Introduction, Wireless Links and Network Characteristics, WiFi: 802.11 Wireless LANs -The 802.11 Architecture,

UNIT - II:

Data Link Layer: Links, Access Networks, and LANs- Introduction to the Link Layer, The Services Provided by the Link Layer, Types of errors, Redundancy, Detection vs Correction, Forward error correction Versus Retransmission Error-Detection and Correction Techniques, Parity Checks, Check summing Methods, Cyclic Redundancy Check (CRC), Framing, Flow Control and Error Control protocols, Noisy less Channels and Noisy Channels, HDLC, Multiple Access Protocols, Random Access, ALOHA, Controlled access, Channelization Protocols. 802.11 MAC Protocol, IEEE 802.11 Frame

UNIT - III:

The Network Layer: Introduction, Forwarding and Routing, Network Service Models, Virtual Circuit and Datagram Networks-Virtual-Circuit Networks, Datagram Networks, Origins of VC and Datagram Networks, Inside a Router-Input Processing, Switching, Output Processing, Queuing, The Routing Control Plane, The Internet Protocol(IP):Forwarding and Addressing in the Internet-Datagram format, Ipv4 Addressing, Internet Control Message Protocol(ICMP), IPv6

UNIT - IV:

Transport Layer: Introduction and Transport Layer Services : Relationship Between Transport and Network Layers, Overview of the Transport Layer in the Internet, Multiplexing and Demultiplexing, Connectionless Transport: UDP -UDP Segment Structure, UDP Checksum, Principles of Reliable Data Transfer-Building a Reliable Data Transfer Protocol, Pipelined Reliable Data Transfer Protocols, Go-Back-N(GBN), Selective Repeat(SR), Connection Oriented Transport: TCP - The TCP Connection, TCP Segment Structure, Round-Trip Time Estimation and Timeout, Reliable Data Transfer, Flow

Control, TCP Connection Management, Principles of Congestion Control - The Cause and the Costs of Congestion, Approaches to Congestion Control

UNIT - V:

Application Layer:

Principles of Networking Applications – Network Application Architectures, Processes Communicating, Transport Services Available to Applications, Transport Services Provided by the File Transfer: FTP,-FTP Commands and Replies, Electronic Mail in the Internet- STMP, Comparison with HTTP, DNS-The Internet's Directory Service – Service Provided by DNS, Overview of How DNS Works, DNS Records and messages.

TEXTBOOKS:

- 1. Computer Networking A Top-Down Approach Kurose James F, Keith W, 6th Edition, Pearson.
- 2. Data Communications and Networking Behrouz A. Forouzan 4th Edition McGraw-Hill Education

REFERENCES:

- 1. Data communication and Networks Bhusan Trivedi, Oxford university press, 2016
- 2. Computer Networks -- Andrew S Tanenbaum, 4th Edition, Pearson Education
- 3. Understanding Communications and Networks, 3rd Edition, W. A. Shay, Cengage Learning.

EC503PC: CONTROL SYSTEMS

B.Tech. III Year I Semester

L	Т	Ρ	С
3	1	0	4

Prerequisite: Linear Algebra and Calculus, Ordinary Differential Equations and Multivariable Calculus Laplace Transforms, Numerical Methods and Complex variables

Course objectives:

- To understand the different ways of system representations such as Transfer function representation and state space representations and to assess the system dynamic response
- To assess the system performance using time domain analysis and methods for improving it
- To assess the system performance using frequency domain analysis and techniques for improving the performance
- To design various controllers and compensators to improve system performance

Course Outcomes: At the end of this course, students will demonstrate the ability to

- Understand the modeling of linear-time-invariant systems using transfer function and statespace representations.
- Understand the concept of stability and its assessment for linear-time invariant systems.
- Design simple feedback controllers.

UNT - I

Introduction to Control Problem: Industrial Control examples. Mathematical models of physical systems. Control hardware and their models. Transfer function models of linear time-invariant systems. Feedback Control: Open-Loop and Closed-loop systems. Benefits of Feedback. Block diagram algebra.

UNT - II

Time Response Analysis of Standard Test Signals: Time response of first and second order systems for standard test inputs. Application of initial and final value theorem. Design specifications for second-order systems based on the time-response. Concept of Stability. Routh-Hurwitz Criteria. Relative Stability analysis. Root-Locus technique. Construction of Root-loci.

UNT - III

Frequency-Response Analysis: Relationship between time and frequency response, Polar plots, Bode plots. Nyquist stability criterion. Relative stability using Nyquist criterion – gain and phase margin. Closed-loop frequency response.

UNT - IV

Introduction to Controller Design: Stability, steady-state accuracy, transient accuracy, disturbance rejection, insensitivity and robustness of control systems. Root-loci method of feedback controller design. Design specifications in frequency-domain. Frequency-domain methods of design. Application of Proportional, Integral and Derivative Controllers, Lead and Lag compensation in designs. Analog and Digital implementation of controllers.

UNT - V

State Variable Analysis and Concepts of State Variables: State space model. Diagonalization of State Matrix. Solution of state equations. Eigen values and Stability Analysis. Concept of controllability and observability. Pole-placement by state feedback. Discrete-time systems. Difference Equations. State-space models of linear discrete-time systems. Stability of linear discrete-time systems.

TEXT BOOKS:

- 1. M. Gopal, "Control Systems: Principles and Design", McGraw Hill Education, 1997.
- 2. B. C. Kuo, "Automatic Control System", Prentice Hall, 1995.

- 1. K. Ogata, "Modern Control Engineering", Prentice Hall, 1991.
- 1. I. J. Nagrath and M. Gopal, "Control Systems Engineering", New Age International, 2009.

SM504MS: BUSINESS ECONOMICS AND FINANCIAL ANALYSIS

B.Tech. III Year I Semester	L	т	Ρ	С
	3	0	0	3

Course Objective: To learn the basic business types, impact of the economy on Business and Firms specifically. To analyze the Business from the Financial Perspective.

Course Outcome: The students will understand the various Forms of Business and the impact of economic variables on the Business. The Demand, Supply, Production, Cost, Market Structure, Pricing aspects are learnt. The Students can study the firm's financial position by analysing the Financial Statements of a Company.

UNIT – I: Introduction to Business and Economics

Business: Structure of Business Firm, Theory of Firm, Types of Business Entities, Limited Liability Companies, Sources of Capital for a Company, Non-Conventional Sources of Finance.

Economics: Significance of Economics, Micro and Macro Economic Concepts, Concepts and Importance of National Income, Inflation, Money Supply and Inflation, Business Cycle, Features and Phases of Business Cycle. Nature and Scope of Business Economics, Role of Business Economist, Multidisciplinary nature of Business Economics.

UNIT - II: Demand and Supply Analysis

Elasticity of Demand: Elasticity, Types of Elasticity, Law of Demand, Measurement and Significance of Elasticity of Demand, Factors affecting Elasticity of Demand, Elasticity of Demand in decision making, Demand Forecasting: Characteristics of Good Demand Forecasting, Steps in Demand Forecasting, Methods of Demand Forecasting.

Supply Analysis: Determinants of Supply, Supply Function and Law of Supply.

UNIT- III: Production, Cost, Market Structures & Pricing

Production Analysis: Factors of Production, Production Function, Production Function with one variable input, two variable inputs, Returns to Scale, Different Types of Production Functions.

Cost analysis: Types of Costs, Short run and Long run Cost Functions.

Market Structures: Nature of Competition, Features of Perfect competition, Monopoly, Oligopoly, Monopolistic Competition.

Pricing: Types of Pricing, Product Life Cycle based Pricing, Break Even Analysis, Cost Volume Profit Analysis.

UNIT - IV: Financial Accounting: Accounting concepts and Conventions, Accounting Equation, Double-Entry system of Accounting, Rules for maintaining Books of Accounts, Journal, Posting to Ledger, Preparation of Trial Balance, Elements of Financial Statements, Preparation of Final Accounts.

UNIT - V: Financial Analysis through Ratios: Concept of Ratio Analysis, Importance, Liquidity Ratios, Turnover Ratios, Profitability Ratios, Proprietary Ratios, Solvency, Leverage Ratios – Analysis and Interpretation (simple problems).

TEXT BOOKS:

- 1. D. D. Chaturvedi, S. L. Gupta, Business Economics Theory and Applications, International Book House Pvt. Ltd. 2013.
- 2. Dhanesh K Khatri, Financial Accounting, Tata Mc Graw Hill, 2011.
- 3. Geethika Ghosh, Piyali Gosh, Purba Roy Choudhury, Managerial Economics, 2e, Tata Mc Graw Hill Education Pvt. Ltd. 2012.

REFERENCES:

- 1. Paresh Shah, Financial Accounting for Management 2e, Oxford Press, 2015.
- 2. S. N. Maheshwari, Sunil K Maheshwari, Sharad K Maheshwari, Financial Accounting, 5e, Vikas Publications, 2013.

EC511PE: COMPUTER ORGANIZATION & OPERATING SYSTEMS

B.Tech. III Year I Semester

L T P C 3 0 0 3

Course Objectives:

- 1. To understand the structure of a computer and its operations.
- 2. To understand the RTL and Micro-level operations and control in a computer.
- 3. Understanding the concepts of I/O and memory organization and operating systems.

Course Outcomes:

- 1. Able to visualize the organization of different blocks in a computer.
- 2. Able to use micro-level operations to control different units in a computer.
- 3. Able to use Operating systems in a computer.

UNIT - I:

Basic Structure of Computers: Computer Types, Functional Unit, Basic OPERATIONAL Concepts, Bus Structures, Software, Performance, Multiprocessors and Multi Computers, Data Representation, Fixed Point Representation, Floating – Point Representation.

Register Transfer Language and Micro Operations: Register Transfer Language, Register Transfer Bus and Memory Transfers, Arithmetic Micro Operations, Logic Micro Operations, Shift Micro Operations, Arithmetic Logic Shift Unit, Instruction Codes, Computer Registers Computer Instructions – Instruction Cycle, Memory – Reference Instructions, Input – Output and Interrupt, STACK Organization, Instruction Formats, Addressing Modes, DATA Transfer and Manipulation, Program Control, Reduced Instruction Set Computer.

UNIT - II:

Micro Programmed Control: Control Memory, Address Sequencing, Microprogram Examples, Design of Control Unit, Hard Wired Control, Microprogrammed Control

The Memory System: Basic Concepts of Semiconductor RAM Memories, Read-Only Memories, Cache Memories Performance Considerations, Virtual Memories Secondary Storage, Introduction to RAID.

UNIT - III:

Input-Output Organization: Peripheral Devices, Input-Output Interface, Asynchronous Data Transfer Modes, Priority Interrupt, Direct Memory Access, Input –Output Processor (IOP), Serial Communication; Introduction to Peripheral Components, Interconnect (PCI) Bus, Introduction to Standard Serial Communication Protocols like RS232, USB, IEEE 1394.

UNIT - IV:

Operating Systems Overview: Overview of Computer Operating Systems Functions, Protection and Security, Distributed Systems, Special Purpose Systems, Operating Systems Structures-Operating System Services and Systems Calls, System Programs, Operating Systems Generation

Memory Management: Swapping, Contiguous Memory Allocation, Paging, Structure of The Page Table, Segmentation, Virtual Memory, Demand Paging, Page-Replacement Algorithms, Allocation of Frames, Thrashing Case Studies - UNIX, Linux, Windows

Principles of Deadlock: System Model, Deadlock Characterization, Deadlock Prevention, Detection and Avoidance, Recovery from Deadlock.

UNIT - V:

File System Interface: The Concept of a File, Access Methods, Directory Structure, File System Mounting, File Sharing, Protection.

File System Implementation: File System Structure, File System Implementation, Directory Implementation, Allocation Methods, Free-Space Management.

TEXT BOOKS:

- 1. Computer Organization Carl Hamacher, Zvonks Vranesic, Safea Zaky, Vth Edition, McGraw Hill.
- 2. Computer Systems Architecture M. Moris Mano, IIIrd Edition, Pearson
- 3. Operating System Concepts- Abraham Silberchatz, Peter B. Galvin, Greg Gagne, 8th Edition, John Wiley.

REFERENCES:

- 1. Computer Organization and Architecture William Stallings Sixth Edition, Pearson
- 2. Structured Computer Organization Andrew S. Tanenbaum, 4th Edition PHI
- 3. Fundamentals of Computer Organization and Design Sivaraama Dandamudi Springer Int. Edition.
- 4. Operating Systems Internals and Design Principles, Stallings, sixth Edition–2009, Pearson Education.
- 5. Modern Operating Systems, Andrew S Tanenbaum 2nd Edition, PHI.
- 6. Principles of Operating Systems, B.L. Stuart, Cengage Learning, India Edition.

EC512PE: ERROR CORRECTING CODES

B.Tech. III Year I Semester

L T P C 3 0 0 3

Prerequisite: Digital Communications

Course Objectives:

- 1. To acquire the knowledge in measurement of information and errors.
- 2. To study the generation of various code methods used in communications.
- 3. To study the various application of codes.

Course Outcomes:

- 1. Able to transmit and store reliable data and detect errors in data through coding.
- 2. Able to understand the designing of various codes like block codes, cyclic codes, convolution codes, turbo codes and space codes.

UNIT – I:

Coding for Reliable Digital Transmission and storage: Mathematical model of Information, A Logarithmic Measure of Information, Average and Mutual Information and Entropy, Types of Errors, Error Control Strategies.

Linear Block Codes: Introduction to Linear Block Codes, Syndrome and Error Detection, Minimum Distance of a Block code, Error-Detecting and Error-correcting Capabilities of a Block code, Standard array and Syndrome Decoding, Probability of an undetected error for Linear Codes over a BSC, Hamming Codes. Applications of Block codes for Error control in data storage system

UNIT - II:

Cyclic Codes: Description, Generator and Parity-check Matrices, Encoding, Syndrome Computation and Error Detection, Decoding, Cyclic Hamming Codes, Shortened cyclic codes, Error-trapping decoding for cyclic codes, Majority logic decoding for cyclic codes.

UNIT – III:

Convolutional Codes: Encoding of Convolutional Codes, Structural and Distance Properties, maximum likelihood decoding, Sequential decoding, Majority- logic decoding of Convolution codes. Application of Viterbi Decoding and Sequential Decoding, Applications of Convolutional codes in ARQ system.

UNIT – IV:

Turbo Codes: LDPC Codes- Codes based on sparse graphs, Decoding for binary erasure channel, Log-likelihood algebra, Brief propagation, Product codes, Iterative decoding of product codes, Concatenated convolutional codes- Parallel concatenation, The UMTS Turbo code, Serial concatenation, Parallel concatenation, Turbo decoding

UNIT - V:

Space-Time Codes: Introduction, Digital modulation schemes, Diversity, Orthogonal space-Time Block codes, Alamouti's schemes, Extension to more than Two Transmit Antennas, Simulation Results, Spatial Multiplexing: General Concept, Iterative APP Preprocessing and Per-layer Decoding, Linear Multilayer Detection, Original BLAST Detection, QL Decomposition and Interface Cancellation, Performance of Multi – Layer Detection Schemes, Unified Description by Linear Dispersion Codes.

TEXT BOOKS:

1. Error Control Coding- Fundamentals and Applications –Shu Lin, Daniel J. Costello, Jr, Prentice Hall, Inc.

2. Error Correcting Coding Theory-Man Young Rhee- 1989, McGraw-Hill

- 1. Error Correcting Coding Theory-Man Young Rhee-1989, McGraw Hill Publishing, 19
- 2. Digital Communications-Fundamental and Application Bernard Sklar, PE.
- 3. Digital Communications- John G. Proakis, 5th ed., 2008, TMH.
- 4. Introduction to Error Control Codes-Salvatore Gravano-oxford
- 5. Error Correction Coding Mathematical Methods and Algorithms Todd K. Moon, 2006, Wiley India.
- 6. Information Theory, Coding and Cryptography Ranjan Bose, 2nd Edition, 2009, TMH.

EC513PE: ELECTRONIC MEASUREMENTS AND INSTRUMENTATION

B.Tech. III Year I Semester	LTPC
	3 0 0 3
Prerequisite: Basic Electrical and Electronics Engineering	

Course Objectives:

- 1. It provides an understanding of various measuring system functioning and metrics for performance analysis.
- 2. Provides understanding of principle of operation, working of different electronic instruments viz. signal generators, signal analyzers, recorders and measuring equipment.
- 3. Understanding the concepts of various measuring bridges and their balancing conditions.
- 4. Provides understanding of use of various measuring techniques for measurement of different physical parameters using different classes of transducers.

Course Outcomes: Upon completing this course, the student will be able to

- 1. Measure electrical parameters with different meters and understand the basic definition of measuring parameters.
- 2. Use various types of signal generators, signal analyzers for generating and analyzing various real-time signals.
- 3. Operate an Oscilloscope to measure various signals.
- 4. Measure various physical parameters by appropriately selecting the transducers.

UNIT - I:

Block Schematics of Measuring Systems: Performance Characteristics, Static Characteristics, Accuracy, Precision, Resolution, Types of Errors, Gaussian Error, Root Sum Squares formula, Dynamic Characteristics, Repeatability, Reproducibility, Fidelity, Lag; Measuring Instruments: DC Voltmeters, D' Arsonval Movement, DC Current Meters, AC Voltmeters and Current Meters, Ohmmeters, Multimeters, Meter Protection, Extension of Range, True RMS Responding Voltmeters, Specifications of Instruments.

UNIT - II:

Signal Analyzers: AF, HF Wave Analyzers, Harmonic Distortion, Heterodyne wave Analyzers, Spectrum Analyzers, Power Analyzers, Capacitance-Voltage Meters, Oscillators. Signal Generators: AF, RF Signal Generators, Sweep Frequency Generators, Pulse and Square wave Generators, Function Generators, Arbitrary Waveform Generator, Video Signal Generators, and Specifications

UNIT III:

Oscilloscopes: CRT, Block Schematic of CRO, Time Base Circuits, Lissajous Figures, CRO Probes, High Frequency CRO Considerations, Delay lines, Applications: Measurement of Time, Period and Frequency Specifications.

Special Purpose Oscilloscopes: Dual Trace, Dual Beam CROs, Sampling Oscilloscopes, Storage Oscilloscopes, Digital Storage CROs.

UNIT IV:

Transducers: Classification, Strain Gauges, Bounded, unbounded; Force and Displacement Transducers, Resistance Thermometers, Hotwire Anemometers, LVDT, Thermocouples, Synchros, Special Resistance Thermometers, Digital Temperature sensing system, Piezoelectric Transducers, Variable Capacitance Transducers, Magneto Strictive Transducers, gyroscopes, accelerometers.

UNIT V:

Bridges: Wheat Stone Bridge, Kelvin Bridge, and Maxwell Bridge.

Measurement of Physical Parameters: Flow Measurement, Displacement Meters, Liquid level Measurement, Measurement of Humidity and Moisture, Velocity, Force, Pressure – High Pressure, Vacuum level, Temperature - Measurements, Data Acquisition Systems.

TEXT BOOKS:

- 1. Modern Electronic Instrumentation and Measurement Techniques: A.D. Helbincs, W. D. Cooper: PHI 5th Edition 2003.
- 2. Electronic Instrumentation: H. S. Kalsi TMH, 2nd Edition 2004.

REFERENCES:

- 1. Electrical and Electronic Measurement and Measuring Instruments A K Sawhney, Dhanpat Rai & Sons, 2013.
- 2. Electronic Instrumentation and Measurements David A. Bell, Oxford Univ. Press, 1997.
- 3. Industrial Instrumentation: T.R. Padmanabham Springer 2009.
- 4. Electronic Measurements and Instrumentation K. Lal Kishore, Pearson Education 2010.

EC505PC: MICROPROCESSORS AND MICROCONTROLLERS LAB

B.Tech. III Year I Semester

L	Т	Ρ	С
0	0	3	1.5

Cycle 1: Using 8086 Processor Kits and/or Assembler (5 Weeks)

- Assembly Language Programs to 8086 to Perform
 - 1. Arithmetic, Logical, String Operations on 16 Bit and 32-Bit Data.
 - 2. Bit level Logical Operations, Rotate, Shift, Swap and Branch Operations.

Cycle 2: Using 8051 Microcontroller Kit (6 weeks)

- Introduction to IDE
 - 1. Assembly Language Programs to Perform Arithmetic (Both Signed and Unsigned) 16 Bit Data Operations, Logical Operations (Byte and Bit Level Operations), Rotate, Shift, Swap and Branch Instructions
 - 2. Time delay Generation Using Timers of 8051.
 - 3. Serial Communication from / to 8051 to / from I/O devices.
 - 4. Program Using Interrupts to Generate Square Wave 10 KHZ Frequency on P2.1 Using Timer 0 8051 in 8 bit Auto reload Mode and Connect a 1 HZ Pulse to INT1 pin and Display on Port 0. Assume Crystal Frequency as 11.0592 MHZ

Cycle 3: Interfacing I/O Devices to 8051(5 Weeks)

- 1. 7 Segment Display to 8051.
- 2. Matrix Keypad to 8051.
- 3. Sequence Generator Using Serial Interface in 8051.
- 4. 8 bit ADC Interface to 8051.
- 5. Triangular Wave Generator through DAC interfaces to 8051.

TEXT BOOKS:

- 1. Advanced Microprocessors and Peripherals by A K Ray, Tata McGraw-Hill Education, 2006
- 2. The 8051 *Microcontrollers*: Architecture, Programming & Applications by Dr. K. Uma Rao, Andhe Pallavi, Pearson, 2009.

EC506PC: DATA COMMUNICATIONS AND NETWORKS LAB

B.Tech. III Year I Semester

L	т	Ρ	С
0	0	3	1.5

Note:

- A. Minimum of 12 Experiments have to be conducted
- B. All the Experiments may be Conducted using Network Simulation software like NS-2, NSG-2.1 and Wire SHARK/equivalent software.
- Note: For Experiments 2 to 10 Performance may be evaluated through simulation by using the parameters Throughput, Packet Delivery Ratio, Delay etc.
 - 1. Writing a TCL Script to create two nodes and links between nodes
 - 2. Writing a TCL Script to transmit data between nodes
 - 3. Evaluate the performance of various LAN Topologies
 - 4. Evaluate the performance of Drop Tail and RED queue management schemes
 - 5. Evaluate the performance of CBQ and FQ Scheduling Mechanisms
 - 6. Evaluate the performance of TCP and UDP Protocols
 - 7. Evaluate the performance of TCP, New Reno and Vegas
 - 8. Evaluate the performance of AODV and DSR routing protocols
 - 9. Evaluate the performance of AODV and DSDV routing protocols
 - 10. Evaluate the performance of IEEE 802.11 and IEEE 802.15.4
 - 11. Evaluate the performance of IEEE 802.11 and SMAC
 - 12. Capturing and Analysis of TCP and IP Packets
 - 13. Simulation and Analysis of ICMP and IGMP Packets
 - 14. Analyze the Protocols SCTP, ARP, NetBIOS, IPX VINES
 - 15. Analysis of HTTP, DNS and DHCP Protocols

Major Equipment Required:

Required software (Open Source) like NS-2, NSG-2.1 and Wire SHARK

EN508HS: ADVANCED COMMUNICATION SKILLS LAB

B.Tech. III Year I Semester

L	Т	Ρ	С
0	0	2	1

1. INTRODUCTION:

The introduction of the Advanced Communication Skills Lab is considered essential at 3rd year level. At this stage, the students need to prepare themselves for their careers which may require them to listen to, read, speak and write in English both for their professional and interpersonal communication in the globalized context.

The proposed course should be a laboratory course to enable students to use 'good' English and perform the following:

- Gathering ideas and information to organize ideas relevantly and coherently.
- Engaging in debates.
- Participating in group discussions.
- Facing interviews.
- Writing project/research reports/technical reports.
- Making oral presentations.
- Writing formal letters.
- Transferring information from non-verbal to verbal texts and vice-versa.
- Taking part in social and professional communication.

2. OBJECTIVES:

This Lab focuses on using multi-media instruction for language development to meet the following targets:

- To improve the students' fluency in English, through a well-developed vocabulary and enable them to listen to English spoken at normal conversational speed by educated English speakers and respond appropriately in different socio-cultural and professional contexts.
- Further, they would be required to communicate their ideas relevantly and coherently in writing.
- To prepare all the students for their placements.

3. SYLLABUS:

The following course content to conduct the activities is prescribed for the Advanced English Communication Skills (AECS) Lab:

- Activities on Fundamentals of Inter-personal Communication and Building Vocabulary -Starting a conversation – responding appropriately and relevantly – using the right body language – Role Play in different situations & Discourse Skills- using visuals - Synonyms and antonyms, word roots, one-word substitutes, prefixes and suffixes, study of word origin, business vocabulary, analogy, idioms and phrases, collocations & usage of vocabulary.
- 2. Activities on Reading Comprehension –General Vs Local comprehension, reading for facts, guessing meanings from context, scanning, skimming, inferring meaning, critical reading& effective googling.
- 3. Activities on Writing Skills Structure and presentation of different types of writing *letter writing/Resume writing/ e-correspondence/Technical report writing/* planning for writing improving one's writing.
- Activities on Presentation Skills Oral presentations (individual and group) through JAM sessions/seminars/<u>PPTs</u> and written presentations through posters/projects/reports/ e-mails/assignments etc.
- 5. Activities on Group Discussion and Interview Skills Dynamics of group discussion, intervention, summarizing, modulation of voice, body language, relevance, fluency and organization of ideas and rubrics for evaluation- Concept and process, pre-interview planning, opening strategies, answering strategies, interview through tele-conference & video-conference and Mock Interviews.

4. MINIMUM REQUIREMENT:

The Advanced English Communication Skills (AECS) Laboratory shall have the following infrastructural facilities to accommodate at least 35 students in the lab:

- Spacious room with appropriate acoustics.
- Round Tables with movable chairs
- Audio-visual aids
- LCD Projector
- Public Address system
- P IV Processor, Hard Disk 80 GB, RAM–512 MB Minimum, Speed 2.8 GHZ
- T. V, a digital stereo & Camcorder
- Headphones of High quality

5. SUGGESTED SOFTWARE:

The software consisting of the prescribed topics elaborated above should be procured and used.

- Oxford Advanced Learner's Compass, 7th Edition
- DELTA's key to the Next Generation TOEFL Test: Advanced Skill Practice.
- Lingua TOEFL CBT Insider, by Dream tech
- TOEFL & GRE (KAPLAN, AARCO & BARRONS, USA, Cracking GRE by CLIFFS)

TEXT BOOKS:

- Effective Technical Communication by M Asharaf Rizvi. McGraw Hill Education (India) Pvt. Ltd. 2nd Edition
- 2. Academic Writing: A Handbook for International Students by Stephen Bailey, Routledge, 5th Edition.

REFERENCES:

- 1. Learn Correct English A Book of Grammar, Usage and Composition by Shiv K. Kumar and Hemalatha Nagarajan. Pearson 2007
- 2. Professional Communication by Aruna Koneru, McGraw Hill Education (India) Pvt. Ltd, 2016.
- 3. Technical Communication by Meenakshi Raman & Sangeeta Sharma, Oxford University Press 2009.
- 4. Technical Communication by Paul V. Anderson. 2007. Cengage Learning pvt. Ltd. New Delhi.
- 5. English Vocabulary in Use series, Cambridge University Press 2008.
- 6. Handbook for Technical Communication by David A. McMurrey & Joanne Buckley. 2012. Cengage Learning.
- 7. Communication Skills by Leena Sen, PHI Learning Pvt Ltd., New Delhi, 2009.
- 8. Job Hunting by Colm Downes, Cambridge University Press 2008.
- 9. English for Technical Communication for Engineering Students, Aysha Vishwamohan, Tata Mc Graw-Hill 2009.

*MC510: INTELLECTUAL PROPERTY RIGHTS

B.Tech. III Year I Semester

L	Т	Ρ	С
3	0	0	0

UNIT – I

Introduction to Intellectual property: Introduction, types of intellectual property, international organizations, agencies and treaties, importance of intellectual property rights.

UNIT – II

Trade Marks: Purpose and function of trademarks, acquisition of trade mark rights, protectable matter, selecting, and evaluating trade mark, trade mark registration processes.

UNIT – III

Law of copy rights: Fundamental of copy right law, originality of material, rights of reproduction, rights to perform the work publicly, copy right ownership issues, copy right registration, notice of copy right, international copy right law.

Law of patents: Foundation of patent law, patent searching process, ownership rights and transfer

UNIT – IV

Trade Secrets: Trade secrete law, determination of trade secrete status, liability for misappropriations of trade secrets, protection for submission, trade secrete litigation.

Unfair competition: Misappropriation right of publicity, false advertising.

UNIT – V

New development of intellectual property: new developments in trade mark law; copy right law, patent law, intellectual property audits.

International overview on intellectual property, international – trade mark law, copy right law, international patent law, and international development in trade secrets law.

TEXT BOOKS & REFERENCES:

- 1. Intellectual property right, Deborah. E. Bouchoux, Cengage learning.
- 2. Intellectual property right Unleashing the knowledge economy, prabuddha ganguli, Tata McGraw Hill Publishing company ltd.

EC601PC: ANTENNAS AND PROPAGATION

B.Tech. III Year II Semester	L	т	Ρ	С	
	3	1	0	4	
Pre-requisite: Electromagnetic Theory and Transmission Lines					

The requisite. Electromagnetic meory and mansmission El

Course Objectives: The course objectives are:

- 1. To understand the concept of radiation, antenna definitions and significance of antenna parameters, to derive and analyze the radiation characteristics of thin wire dipole antennas and solve numerical problems.
- 2. To analyze the characteristics and design relations of UHF, VHF and Microwave Antennas.
- 3. To identify the antenna array requirements, to determine the characteristics of ULAs and estimate the patterns of BSA, EFA, and Binomial Arrays.
- 4. To understand the concepts and set-up requirements for microwave measurements, and familiarize with the procedure to enable antenna measurements.
- 5. To define and distinguish between different phenomenon of wave propagation (ground wave, space wave and sky wave), their frequency dependence, and estimate their characteristics, identifying their profiles and parameters involved.

Course Outcomes: Upon completing this course, the student will be able to explain the mechanism of radiation, definitions of different antenna characteristic parameters and establish their mathematical relations.

- 1. Characterize the antennas based on frequency, configure the geometry and establish the radiation patterns of VHF, UHF and Microwave antennas and also antenna arrays.
- 2. Specify the requirements for microwave measurements and arrange a setup to carry out the antenna far zone pattern and gain measurements in the laboratory.
- 3. Classify the different wave propagation mechanisms, determine the characteristic features of different wave propagations, and estimate the parameters involved.

UNIT - I

Antenna Basics: Basic Antenna Parameters – Patterns, Beam Area, Radiation Intensity, Beam Efficiency, Directivity-Gain-Resolution, Antenna Apertures, Effective Height.

Fields from Oscillating Dipole, Field Zones, Front - to-back Ratio, Antenna Theorems, Radiation, Retarded Potentials – Helmholtz Theorem

Thin Linear Wire Antennas – Radiation from Small Electric Dipole, Quarter Wave Monopole and Half Wave Dipole – Current Distributions, Field Components, Radiated Power, Radiation Resistance, Beam Width, Directivity, Effective Area and Effective Height, Natural Current Distributions, Far Fields and Patterns of Thin Linear Centre-fed Antennas of Different Lengths. Loop Antennas - Small Loop, Comparison of Far Fields of Small Loop and Short Dipole, Radiation Resistances and Directivities of Small Loops (Qualitative Treatment).

UNIT - II

Antenna Arrays: Point Sources – Definition, Patterns, arrays of 2 Isotropic Sources - Different Cases, Principle of Pattern Multiplication, Uniform Linear Arrays – Broadside Arrays, Endfire Arrays, EFA with Increased Directivity, Derivation of their Characteristics and Comparison, BSAs with Non-uniform Amplitude Distributions – General Considerations and Binomial Arrays.

Antenna Measurements: Introduction, Concepts - Reciprocity, Near and Far Fields, Coordinate System, Sources of Errors. Patterns to be Measured, Directivity Measurement, Gain Measurements (by Comparison, Absolute and 3-Antenna Methods)

UNIT - III:

VHF, UHF and Microwave Antennas - I: Arrays with Parasitic Elements, Yagi-Uda Array, Folded Dipoles and their Characteristics, Helical Antennas – Helical Geometry, Helix Modes, Practical Design Considerations for Monofilar Helical Antenna in Axial and Normal Modes, Horn Antennas – Types, Fermat's Principle, Optimum Horns, Design Considerations of Pyramidal Horns.

UNIT - IV

VHF, UHF and Microwave Antennas - II: Microstrip Antennas – Introduction, Features, Advantages and Limitations, Rectangular Patch Antennas – Geometry and Parameters, Characteristics of Microstrip Antennas. Reflector Antennas – Introduction, Flat Sheet and Corner Reflectors, Paraboloidal Reflectors – Geometry, Pattern Characteristics, Feed Methods, Reflector Types – Related Features.

UNIT - V:

Wave Propagation - Definitions, Categorizations and General Classifications, Different Modes of Wave Propagation, Ray/Mode Concepts,

Ground Wave Propagation –Plane Earth Reflections, Space and Surface Waves, Wave Tilt, Curved Earth Reflections.

Space Wave Propagation –Field Strength Variation with Distance and Height, Effect of Earth's Curvature, Absorption, Super Refraction, M-Curves and Duct Propagation, Scattering Phenomena, Troposphere Propagation.

Sky Wave Propagation –Structure of Ionosphere, Refraction and Reflection of Sky Waves by Ionosphere, Ray Path, Critical Frequency, MUF, LUF, OF, Virtual Height and Skip Distance, Relation between MUF and Skip Distance, Multi-hop Propagation.

TEXT BOOKS:

- 1. Antennas and Wave Propagation J.D. Kraus, R.J. Marhefka and Ahmad S. Khan, TMH, New Delhi, 4th ed., (Special Indian Edition), 2010.
- 2. Electromagnetic Waves and Radiating Systems E.C. Jordan and K.G. Balmain, PHI, 2nd ed., 2000.

- 1. Antenna Theory C.A. Balanis, John Wiley & Sons, 3rd Ed., 2005.
- 2. Antennas and Wave Propagation K.D. Prasad, Satya Prakashan, Tech India Publications, New Delhi, 2001.
- 3. Radio Engineering Handbook- Keith henney, 3rd edition TMH.
- 4. Antenna Engineering Handbook John Leonidas Volakis, 3rd edition, 2007

EC602PC: DIGITAL SIGNAL PROCESSING

B.Tech. III Year II Semester	L	т	Ρ	С
	3	1	0	4

Prerequisite: Signals and Systems

Course Objectives:

- 1. To provide background and fundamental material for the analysis and processing of digital signals.
- 2. To understand the fast computation of DFT and appreciate the FFT processing.
- 3. To study the designs and structures of digital (IIR and FIR) filters and analyze and synthesize for a given specifications.
- 4. To acquaint in Multi-rate signal processing techniques and finite word length effects.

Course Outcomes: Upon completing this course, the student will be able to

- 1. Understand the LTI system characteristics and Multirate signal processing.
- 2. Understand the inter-relationship between DFT and various transforms.
- 3. Design a digital filter for a given specification.
- 4. Understand the significance of various filter structures and effects of round off errors.

UNIT - I:

Introduction: Introduction to Digital Signal Processing: Discrete Time Signals & Sequences, conversion of continuous to discrete signal, Normalized Frequency, Linear Shift Invariant Systems, Stability, and Causality, linear differential equation to difference equation, Linear Constant Coefficient Difference Equations, Frequency Domain Representation of Discrete Time Signals and Systems **Multirate Digital Signal Processing:** Introduction, Down Sampling, Decimation, Up sampling, Interpolation, Sampling Rate Conversion.

UNIT - II:

Discrete Fourier series: Fourier Series, Fourier Transform, Laplace Transform and Z-Transform relation, DFS Representation of Periodic Sequences, Properties of Discrete Fourier Series, Discrete Fourier Transforms: Properties of DFT, Linear Convolution of Sequences using DFT, Computation of DFT: Over-Lap Add Method, Over-Lap Save Method, Relation between DTFT, DFS, DFT and Z-Transform.

Fast Fourier Transforms: Fast Fourier Transforms (FFT) - Radix-2 Decimation-in-Time and Decimation-in-Frequency FFT Algorithms, Inverse FFT.

UNIT - III

IIR Digital Filters: Analog filter approximations – Butterworth and Chebyshev, Design of IIR Digital Filters from Analog Filters, Step and Impulse Invariant Techniques, Bilinear Transformation Method, Spectral Transformations.

UNIT - IV

FIR Digital Filters: Characteristics of FIR Digital Filters, Frequency Response. Design of FIR Filters: Fourier Method, Digital Filters using Window Techniques, Frequency Sampling Technique, Comparison of IIR & FIR filters.

UNIT - V

Realization of Digital Filters: Applications of Z – Transforms, Solution of Difference Equations of Digital Filters, System Function, Stability Criterion, Frequency Response of Stable Systems, Realization of Digital Filters – Direct, Canonic, Cascade and Parallel Forms.

Finite Word Length Effects: Limit cycles, Overflow Oscillations, Round-off Noise in IIR Digital Filters, Computational Output Round Off Noise, Methods to Prevent Overflow, Trade Off Between Round Off and Overflow Noise, Measurement of Coefficient Quantization Effects through Pole-Zero Movement, Dead Band Effects.

TEXT BOOKS:

- 1. Discrete Time Signal Processing A. V. Oppenheim and R.W. Schaffer, PHI, 2009
- 2. Digital Signal Processing, Principles, Algorithms, and Applications: John G. Proakis, Dimitris G. Manolakis, Pearson Education / PHI, 2007.

REFERENCES:

- 1. Digital Signal Processing Fundamentals and Applications Li Tan, Elsevier, 2008
- 2. Fundamentals of Digital Signal Processing using MATLAB Robert J. Schilling, Sandra L. Harris, Thomson, 2007
- 3. Digital Signal Processing S. Salivahanan, A. Vallavaraj and C. Gnanapriya, TMH, 2009
- 4. Digital Signal Processing A Practical approach, Emmanuel C. Ifeachor and Barrie W. Jervis, 2nd Edition, Pearson Education, 2009

EC603PC: VLSI DESIGN

B.Tech. III Year II Semester

L	т	Ρ	С
3	1	0	4

Prerequisite: Electronic Circuit Analysis; Switching Theory and Logic Design

Course Objectives: The objectives of the course are to:

- 1. Give exposure to different steps involved in the fabrication of ICs.
- 2. Explain electrical properties of MOS and BiCMOS devices to analyze the behavior of inverters designed with various loads.
- 3. Give exposure to the design rules to be followed to draw the layout of any logic circuit.
- 4. Provide design concepts to design building blocks of data path of any system using gates.
- 5. Understand basic programmable logic devices and testing of CMOS circuits.

Course Outcomes: Upon completing this course, the student will be able to

- 1. Acquire qualitative knowledge about the fabrication process of integrated circuits using MOS transistors.
- 2. Draw the layout of any logic circuit which helps to understand and estimate parasitic effect of any logic circuit
- 3. Design building blocks of data path systems, memories and simple logic circuits using PLA, PAL, FPGA and CPLD.
- 4. Understand different types of faults that can occur in a system and learn the concept of testing and adding extra hardware to improve testability of system.

UNIT – I

Introduction: Introduction to IC Technology – MOS, PMOS, NMOS, CMOS & BiCMOS

Basic Electrical Properties: Basic Electrical Properties of MOS and BiCMOS Circuits: Ids-Vds relationships, MOS transistor threshold Voltage, gm, gds, Figure of merit; Pass transistor, NMOS Inverter, Various pull ups, CMOS Inverter analysis and design, Bi-CMOS Inverters.

UNIT - II

VLSI Circuit Design Processes: VLSI Design Flow, MOS Layers, Stick Diagrams, Design Rules and Layout, Transistors Layout Diagrams for NMOS and CMOS Inverters and Gates, Scaling of MOS circuits.

UNIT – III

Gate Level Design: Logic Gates and Other complex gates, Switch logic, Alternate gate circuits, Time delays, Driving large capacitive loads, Wiring capacitance, Fan – in, Fan – out.

UNIT - IV

Data Path Subsystems: Subsystem Design, Shifters, Adders, ALUs, Multipliers, Parity generators, Comparators, Zero/One Detectors, Counters.

Array Subsystems: SRAM, DRAM, ROM, Serial Access Memories.

UNIT - V

Programmable Logic Devices: Design Approach – PLA, PAL, Standard Cells FPGAs, CPLDs. **CMOS Testing:** CMOS Testing, Test Principles, Design Strategies for test, Chip level Test Techniques.

TEXT BOOKS:

1. Essentials of VLSI circuits and systems – Kamran Eshraghian, Eshraghian Dougles and A. Pucknell, PHI, 2005 Edition

2. CMOS VLSI Design – A Circuits and Systems Perspective, Neil H. E Weste, David Harris, Ayan Banerjee, 3rd Ed, Pearson, 2009.

- 1. Introduction to VLSI Systems: A Logic, Circuit and System Perspective Ming-BO Lin, CRC Press, 2011
- 2. CMOS logic circuit Design John. P. Uyemura, Springer, 2007.
- 3. Modern VLSI Design Wayne Wolf, Pearson Education, 3rd Edition, 1997.
- 4. VLSI Design- K. Lal Kishore, V. S. V. Prabhakar, I.K International, 2009.

EI603PC/EC611PE: OBJECT ORIENTED PROGRAMMING THROUGH JAVA

B.Tech. III Year II Semester	L	т	Ρ	С	
	3	0	0	3	

Prerequisites: Programming for Problem Solving.

Course Objectives:

- 1. Introduces Object Oriented Programming Concepts Using The Java Language
- 2. Introduces The Principles Of Inheritance And Polymorphism; And Demonstrates How They Relate To The Design Of Abstract Classes.
- 3. Introduces The Implementation Of Packages And Interfaces.
- 4. Introduces Exception Handling, Event Handling and Multithreading.
- 5. Introduces The Design Of Graphical User Interface Using Applets And Swings.

Course Outcomes:

- 1. Develop Applications for Range of Problems Using Object-Oriented Programming Techniques
- 2. Design Simple Graphical User Interface Applications.

UNIT - I:

Object Oriented Thinking and Java Basics: Need for OOP Paradigm, Summary of OOP Concepts, Coping with Complexity, Abstraction Mechanisms, A Way of Viewing World – Agents, Responsibility, Messages, Methods, History of Java, Java Buzzwords, Data Types, Variables, Scope and Life Time of Variables, Arrays, Operators, Expressions, Control Statements, Type Conversion and Casting, Simple Java Program, Concepts of Classes, Objects, Constructors, Methods, Access Control, This Keyword, Garbage Collection, Overloading Methods and Constructors, Method Binding, Inheritance, Overriding and Exceptions, Parameter Passing, Recursion, Nested and Inner Classes, Exploring String Class.

UNIT - II:

Inheritance, Packages and Interfaces: Hierarchical Abstractions, Base Class Object, Subclass, Subtype, Substitutability, Forms of Inheritance- Specialization, Specification, Construction, Extension, Limitation, Combination, Benefits of Inheritance, Costs of Inheritance. Member Access Rules, Super Uses, Using Final with Inheritance, Polymorphism- Method Overriding, Abstract Classes, The Object Class.

Defining, Creating and Accessing a Package, Understanding Classpath, Importing Packages, Differences between Classes and Interfaces, Defining an Interface, Implementing Interface, Applying Interfaces, Variables in Interface and Extending Interfaces, Exploring Java.IO.

UNIT - III:

Exception Handling and Multithreading: Concepts of Exception Handling, Benefits of Exception Handling, Termination or Resumptive Models, Exception Hierarchy, Usage of Try, Catch, Throw, Throws and Finally, Built in Exceptions, Creating Own Exception Sub Classes.

String Handling, Exploring Java.Util, Differences between Multi-Threading and Multitasking, Thread Life Cycle, Creating Threads, Thread Priorities, Synchronizing Threads, Interthread Communication, Thread Groups, Daemon Threads.

Enumerations, Autoboxing, Annotations, Generics.

UNIT - IV:

Event Handling: Events, Event Sources, Event Classes, Event Listeners, Delegation Event Model, Handling Mouse and Keyboard Events, Adapter Classes.

The AWT Class Hierarchy, User Interface Components- Labels, Button, Canvas, Scrollbars, Text Components, Check Box, Check Box Groups, Choices, Lists Panels – Scrollpane, Dialogs, Menubar, Graphics, Layout Manager – Layout Manager Types – Border, Grid, Flow, Card and Grid Bag.

UNIT - V:

Applets: Concepts f Applets, Differences between Applets and Applications, Life Cycle of an Applet, Types of Applets, Creating Applets, Passing Parameters to Applets.

Swing: Introduction, Limitations of AWT, MVC Architecture, Components, Containers, Exploring Swing- Japplet, Jframe and Jcomponent, Icons and Labels, Text Fields, Buttons – The Jbutton Class, Check Boxes, Radio Buttons, Combo Boxes, Tabbed Panes, Scroll Panes, Trees, and Tables.

TEXT BOOKS:

- 1. Java the Complete Reference, 7th Edition, Herbert Schildt, TMH.
- 2. Understanding OOP with Java Updated Edition, T. Budd, Pearson Education.

REFERENCES:

- 1. An Introduction to Programming and OO Design using Java, J. Nino and F.A. Hosch, John Wiley & Sons.
- 2. An Introduction to OOP, Third Edition, T. Budd, Pearson Education.
- 3. Introduction to Java Programming, Y. Daniel Liang, Pearson Education.
- 4. An Introduction to Java Programming and Object-Oriented Application Development, R.A. Johnson- Thomson.
- 5. Core Java 2, Vol 1, Fundamentals, Cay. S. Horstmann and Gary Cornell, Eighth Edition, Pearson Education.
- 6. Core Java 2, Vol 2, Advanced Features, Cay. S. Horstmann and Gary Cornell, eighth Edition, Pearson Education

EC612PE: MOBILE COMMUNICATIONS AND NETWORKS

B.Tech. III Year II Semester	L	т	Р	С	
	3	0	0	3	
Prerequisites: Analog and Digital Communications					

Course Objectives:

- 1. To provide the student with an understanding of the cellular concept, frequency reuse, handoff strategies.
- 2. To provide the student with an understanding of Co-channel and Non-Co-Channel interferences.
- 3. To give the student an understanding of cell coverage for signal and traffic, diversity techniques and channel assignment
- 4. To give the student an understanding types of handoff.
- 5. To understand challenges and application of Adhoc wireless Networks.

Course Outcomes: Upon completing this course, the student will be able to:

- 1. Known the evolution of cellular and mobile communication system.
- 2. The student will be able to understand Co-Channel and Non-Co-Channel interferences.
- 3. Understand impairments due to multipath fading channel and how to overcome the different fading effects.
- 4. Familiar with cell coverage for signal and traffic, diversity, techniques, frequency management, Channel assignment and types of handoff.
- 5. Know the difference between cellular and Adhoc Networks and design goals of MAC Layer protocol.

UNIT - I

Introduction to Cellular Mobile Radio Systems: Limitations of Conventional Mobile Telephone Systems. Basic Cellular Mobile System, First, Second, Third and Fourth Generation Cellular Wireless Systems. Uniqueness of Mobile Radio Environment-Fading-Tie Dispersion Parameters, Coherence Bandwidth, Doppler Spread and Coherence Time.

Fundamentals of Cellular Radio System Design: Concept of Frequency Reuse, Co-Channel Interference, Co-Channel Interference Reduction Factor, Desired C/I from a Normal Case in a Omni Directional Antenna System, System Capacity Improving Coverage and Capacity in Cellular Systems-Cell Splitting, Sectoring, Microcell Zone Concept.

UNIT – II

Co-Channel Interference: Measurement of Real Time Co-Channel Interference, Design of Antenna System, Antenna Parameters and their effects, diversity techniques-space diversity, polarization diversity, frequency diversity, time diversity.

Non Co-Channel Interference: Adjacent Channel Interference, Near end far end interference, cross talk, effects on coverage and interference by power decrease, antenna height decrease, effects of cell site components.

UNIT – III

Cell Coverage for Signal and Traffic: Signal Reflections in flat and Hilly Terrain, effects of Human Made Structures, phase difference between direct and reflected paths, constant standard deviation, straight line path loss slope, general formula for mobile propagation over water and flat open area, near and long-distance propagation, path loss from a point to point prediction model in different conditions, merits of lee model.

Frequency Management and Channel Assignment: Numbering and Grouping, Setup Access and Paging Channels, Channel Assignments to Cell Sites and Mobile Units.

UNIT - IV

Handoffs and Dropped Calls: Handoff Initiation, types of Handoff, Delaying Handoff, advantages of Handoff, Power Difference Handoff, Forced Handoff, Mobile Assisted and Soft Handoff, Intersystem handoff, Introduction to Dropped Call Rates and their Evaluation.

UNIT - V

Ad Hoc Wireless Networks: Introduction, Cellular and Ad Hoc wireless Networks, Applications and Ad Hoc Wireless Networks, Issues in Ad Hoc Wireless Networks, Ad Hoc Wireless Internet, MAC Protocols for Ad Hoc Wireless, Introduction, issues in designing AMAC Protocol for Ad Hoc wireless Networks, Design Goals of AMAC protocol for Ad Hoc Wireless Networks, Classification of MAC Protocols.

TEXT BOOKS:

- 1. Mobile Cellular Telecommunications-W.C.Y. Lee, Mc Graw Hill, 2nd Edn., 1989.
- 2. Wireless Communications-Theodore. S. Rapport, Pearson Education, 2nd Edn., 2002.

- 1. Ad Hoc Wireless Networks: Architectures and Protocols-C. Siva ram Murthy and B.S. Manoj, 2004, PHI.
- 2. Modern Wireless Communications-Simon Haykin, Michael Moher, Pearson Education, 2005.
- 3. Wireless Communications and Networking, Vijay Garg, Elsevier Publications, 2007.
- 4. Wireless Communications-Andrea Goldsmith, Cambridge University Press, 2005.

EC613PE: EMBEDDED SYSTEM DESIGN

B.Tech. III Year II Semester

L	Т	Ρ	С
3	0	0	3

Prerequisite: Microprocessors and Microcontrollers; Computer Organization and Operating Systems

Course Objectives:

- 1. To provide an overview of Design Principles of Embedded System.
- 2. To provide clear understanding about the role of firmware.
- 3. To understand the necessity of operating systems in correlation with hardware systems.
- 4. To learn the methods of interfacing and synchronization for tasking.

Course Outcomes: Upon completing this course, the student will be able to

- 1. To understand the selection procedure of Processors in the embedded domain.
- 2. Design Procedure for Embedded Firmware.
- 3. To visualize the role of Real time Operating Systems in Embedded Systems.
- 4. To evaluate the Correlation between task synchronization and latency issues

UNIT - I:

Introduction to Embedded Systems: Definition of Embedded System, Embedded Systems Vs General Computing Systems, History of Embedded Systems, Classification, Major Application Areas, Purpose of Embedded Systems, Characteristics and Quality Attributes of Embedded Systems.

UNIT - II:

Typical Embedded System: Core of the Embedded System: General Purpose and Domain Specific Processors, ASICs, PLDs, Commercial Off-The-Shelf Components (COTS), Memory: ROM, RAM, Memory according to the type of Interface, Memory Shadowing, Memory selection for Embedded Systems, Sensors and Actuators, Communication Interface: Onboard and External Communication Interfaces.

UNIT - III:

Embedded Firmware: Reset Circuit, Brown-out Protection Circuit, Oscillator Unit, Real Time Clock, Watchdog Timer, Embedded Firmware Design Approaches and Development Languages.

UNIT - IV:

RTOS Based Embedded System Design: Operating System Basics, Types of Operating Systems, Tasks, Process and Threads, Multiprocessing and Multitasking, Task Scheduling.

UNIT - V:

Task Communication: Shared Memory, Message Passing, Remote Procedure Call and Sockets, **Task Synchronization**: Task Communication/Synchronization Issues, Task Synchronization Techniques, Device Drivers, Methods to Choose an RTOS.

TEXT BOOKS:

1. Introduction to Embedded Systems - Shibu K.V, Mc Graw Hill.

- 2. Embedded Systems Raj Kamal, TMH.
- 3. Embedded System Design Frank Vahid, Tony Givargis, John Wiley.
- 4. Embedded Systems Lyla, Pearson, 2013
- 5. An Embedded Software Primer David E. Simon, Pearson Education.

EC604PC: DIGITAL SIGNAL PROCESSING LAB

B.Tech. III Year II Semester	L	т	Ρ	С
	0	0	3	1.5

The Programs shall be implemented in Software (Using MATLAB / Lab View / C Programming/ Equivalent) and Hardware (Using TI / Analog Devices / Motorola / Equivalent DSP processors).

Note: - Minimum of 12 experiments has to be conducted.

List of Experiments:

- 1. Generation of Sinusoidal Waveform / Signal based on Recursive Difference Equations
- 2. Histogram of White Gaussian Noise and Uniformly Distributed Noise.
- 3. To find DFT / IDFT of given DT Signal
- 4. To find Frequency Response of a given System given in Transfer Function/ Differential equation form.
- 5. Obtain Fourier series coefficients by formula and using FET and compare for half sine wave.
- 6. Implementation of FFT of given Sequence
- 7. Determination of Power Spectrum of a given Signal(s).
- 8. Implementation of LP FIR Filter for a given Sequence/Signal.
- 9. Implementation of HP IIR Filter for a given Sequence/Signal
- 10. Generation of Narrow Band Signal through Filtering
- 11. Generation of DTMF Signals
- 12. Implementation of Decimation Process
- 13. Implementation of Interpolation Process
- 14. Implementation of I/D Sampling Rate Converters
- 15. Impulse Response of First order and Second Order Systems.

EC605PC: e - CAD LAB

B.Tech. III Year II Semester	L	т	Ρ	С
	0	0	3	1.5

Note: Any SIX of the following experiments from each part are to be conducted (Total 12)

Part - I

All the following experiments have to be implemented using HDL

- 1. Realize all the logic gates
- 2. Design of 8-to-3 encoder (without and with priority) and 2-to-4 decoder
- 3. Design of 8-to-1 multiplexer and 1-to-8 demultiplexer
- 4. Design of 4 bit binary to gray code converter
- 5. Design of 4 bit comparator
- 6. Design of Full adder using 3 modeling styles
- 7. Design of flip flops: SR, D, JK, T
- 8. Design of 4-bit binary, BCD counters (synchronous/ asynchronous reset) or any sequence counter
- 9. Finite State Machine Design

Part-II

Layout, physical verification, placement & route for complex design, static timing analysis, IR drop analysis and crosstalk analysis for the following:

- 1. Basic logic gates
- 2. CMOS inverter
- 3. CMOS NOR/ NAND gates
- 4. CMOS XOR and MUX gates
- 5. Static / Dynamic logic circuit (register cell)
- 6. Latch
- 7. Pass transistor
- 8. Layout of any combinational circuit (complex CMOS logic gate).

EC606PC: SCRIPTING LANGUAGES LAB

B.Tech. III Year II Semester

L	Т	Ρ	С
0	0	2	1

Prerequisites: Any High-level programming language (C, C++)

Course Objectives:

- To Understand the concepts of scripting languages for developing web-based projects
- To understand the applications the of Ruby, TCL, Perl scripting languages

Course Outcomes:

- Ability to understand the differences between Scripting languages and programming languages
- Able to gain some fluency programming in Ruby, Perl, TCL

List of Experiments

- 1. Write a Ruby script to create a new string which is n copies of a given string where n is a nonnegative integer
- 2. Write a Ruby script which accept the radius of a circle from the user and compute the parameter and area.
- 3. Write a Ruby script which accept the user's first and last name and print them in reverse order with a space between them
- 4. Write a Ruby script to accept a filename from the user print the extension of that
- 5. Write a Ruby script to find the greatest of three numbers
- 6. Write a Ruby script to print odd numbers from 10 to 1
- 7. Write a Ruby scirpt to check two integers and return true if one of them is 20 otherwise return their sum
- 8. Write a Ruby script to check two temperatures and return true if one is less than 0 and the other is greater than 100
- 9. Write a Ruby script to print the elements of a given array
- 10. Write a Ruby program to retrieve the total marks where subject name and marks of a student stored in a hash
- 11. Write a TCL script to find the factorial of a number
- 12. Write a TCL script that multiplies the numbers from 1 to 10
- 13. Write a TCL script for Sorting a list using a comparison function
- 14. Write a TCL script to (i)create a list (ii)append elements to the list (iii)Traverse the list (iv)Concatenate the list
- 15. Write a TCL script to comparing the file modified times.
- 16. Write a TCL script to Copy a file and translate to native format.
- 17. a) Write a Perl script to find the largest number among three numbers.
 - b) Write a Perl script to print the multiplication tables from 1-10 using subroutines.
- 18. Write a Perl program to implement the following list of manipulating functions
 - a)Shift
 - b)Unshift

c)Push

- 19. a) Write a Perl script to substitute a word, with another word in a string.
 - b) Write a Perl script to validate IP address and email address.
- 20. Write a Perl script to print the file in reverse order using command line arguments

*MC609: ENVIRONMENTAL SCIENCE

B.Tech. III Year II Semester

L T P C 3 0 0 0

Course Objectives:

- Understanding the importance of ecological balance for sustainable development.
- Understanding the impacts of developmental activities and mitigation measures
- Understanding the environmental policies and regulations

Course Outcomes:

Based on this course, the Engineering graduate will understand /evaluate / develop technologies on the basis of ecological principles and environmental regulations which in turn helps in sustainable development

UNIT - I

Ecosystems: Definition, Scope and Importance of ecosystem. Classification, structure, and function of an ecosystem, Food chains, food webs, and ecological pyramids. Flow of energy, Biogeochemical cycles, Bioaccumulation, Biomagnification, ecosystem value, services and carrying capacity, Field visits.

UNIT - II

Natural Resources: Classification of Resources: Living and Non-Living resources, water **resources:** use and over utilization of surface and ground water, floods and droughts, Dams: benefits and problems. **Mineral resources:** use and exploitation, environmental effects of extracting and using mineral resources, **Land resources:** Forest resources, **Energy resources:** growing energy needs, renewable and non renewable energy sources, use of alternate energy source, case studies.

UNIT - III

Biodiversity And Biotic Resources: Introduction, Definition, genetic, species and ecosystem diversity. Value of biodiversity; consumptive use, productive use, social, ethical, aesthetic and optional values. India as a mega diversity nation, Hot spots of biodiversity. Field visit. Threats to biodiversity: habitat loss, poaching of wildlife, man-wildlife conflicts; conservation of biodiversity: In-Situ and Ex-situ conservation. National Biodiversity act.

UNIT - IV

Environmental Pollution and Control Technologies: Environmental Pollution: Classification of pollution, Air Pollution: Primary and secondary pollutants, Automobile and Industrial pollution, Ambient air quality standards. Water pollution: Sources and types of pollution, drinking water quality standards. Soil Pollution: Sources and types, Impacts of modern agriculture, degradation of soil. Noise Pollution: Sources and Health hazards, standards, Solid waste: Municipal Solid Waste management, composition and characteristics of e-Waste and its management. Pollution control technologies: Wastewater Treatment methods: Primary, secondary and Tertiary.

Overview of air pollution control technologies, Concepts of bioremediation. **Global Environmental Problems and Global Efforts: Climate** change and impacts on human environment. Ozone depletion and Ozone depleting substances (ODS). Deforestation and desertification. International conventions / Protocols: Earth summit, Kyoto protocol, and Montréal Protocol.

UNIT - V

Environmental Policy, Legislation & EIA: Environmental Protection act, Legal aspects Air Act- 1981, Water Act, Forest Act, Wild life Act, Municipal solid waste management and handling rules, biomedical waste management and handling rules, hazardous waste management and handling rules. EIA: EIA structure, methods of baseline data acquisition. Overview on Impacts of air, water, biological and Socio-

economical aspects. Strategies for risk assessment, Concepts of Environmental Management Plan (EMP). **Towards Sustainable Future:** Concept of Sustainable Development, Population and its explosion, Crazy Consumerism, Environmental Education, Urban Sprawl, Human health, Environmental Ethics, Concept of Green Building, Ecological Foot Print, Life Cycle assessment (LCA), Low carbon life style.

TEXT BOOKS:

- 1. Textbook of Environmental Studies for Undergraduate Courses by Erach Bharucha for University Grants Commission.
- 2. Environmental Studies by R. Rajagopalan, Oxford University Press.

- 1. Environmental Science: towards a sustainable future by Richard T. Wright. 2008 PHL Learning Private Ltd. New Delhi.
- 2. Environmental Engineering and science by Gilbert M. Masters and Wendell P. Ela. 2008 PHI Learning Pvt. Ltd.
- 3. Environmental Science by Daniel B. Botkin & Edward A. Keller, Wiley INDIA edition.
- 4. Environmental Studies by Anubha Kaushik, 4th Edition, New age international publishers.
- 5. Text book of Environmental Science and Technology Dr. M. Anji Reddy 2007, BS Publications.